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Machine Learning Machine Learning “as a service” for CMS

The CMS experiment at CERN exploits various ML techniques due various physics and computing related projects. The

construction and deployment of a ML project and its deployment for production use requires specific skills and it is a highly time-

consuming task. There are no data science teams stably collaborating with CMS physicists and helping them to achieve their ML

NOt- H E P H E P objectives. At the same time, the CMS physicists themselves rarely have specific data science skills to face such challenges alone.
towards ngh Luminosity LHC [1] What is needed to design and run successfully a ML project is often not found in a basic CMS physicist expertize (or a HEP

physicist, for what matters) whose primary competences are focussed on high energy physics, data analysis (including statistics),
and whose ultimate goal is work towards a physics publication. Facing the need to improve a physics data analysis and
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CMSSW framework. The basic idea is as simple as this:

instead of asking each physicists who wants to exploit ML in

their own task to just learn how to do it and do it themselves ?
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Below a simple use of TFaa$S is shown: after the TFaa$S server is launched and the model loaded, the -
prediction for an event in terms of probability is produced. 400\—
str957-135:0emo luéa.giommi$ cd TFaaS/src/Go/ 200::_
str957-135:60 luca.giommi}$ ./tfaas -config=config.json & —
[1] 8514 ‘ |
str957-135:60 luca.giommi$ INFO[BBBA] <Config port=8883 dir=/Users/luca.giommi/Demo/keras_to_tensorflow base= auth=false config 0-_1 L1 coev o ooy by by Y T
Prot= verbose=8 log=text crt= key=> 0 50 100 150 200 250 300 350 400
INFO[@BBa] Starting HTTP server Addr=":808383" GeV
str957-135:60 luca.giommi$ curl -L -k -i -¥ POST http://localhost:8883/upload -F 'name=modell’' -F 'params=@/Users/luca.giommi/D
emo/ TFaaS/src/Go/paramsl. json' -F 'model=@/Users/luca.giommi/Demo/keras_to_tensorflow/11_B4_model.hS.pb' -F 'labels=@/Users/luc
a.giommi/Demo/keras_to_tensorflow/sb_labels.csv'
HTTP/1.1 188 Continue / \
INFO[B168] store as params. json FileName=paramsl. json COn Cl USIOHS
INFO[A168] Uploaded File=/Users/luca.giommi/Demo/keras_to_tensorflow/modell/params. json
INFO[B168] Uploaded File=/Users/luca.giommi/Demo/keras_to_tensorflow/modell/11_B4_model.hS . h | . . | h f f k . . | h
o An end-to-end data service has been developed to provide trained ML models to the CMS software framework and in particular the
INFO[B168] Uploaded File=/Users/luca.gionmi/Deno/keras_to_tensorflow/model1/sb_labels.csv proof-of-concept has been demonstrated in the s/b discrimination in the all-hadronic channel in the tt decay. A simple demo [4] has

HTTP/1.1 288 0K

Date: Fri, 25 May 2818 19:85:28 GNT
Content-Length: @

Content-Type: text/plain; charset=utf-§ Pq

been created that shows how a common user can use TFaaS to make predictions.

ext steps: review and improve all the steps done and move the model creation and training on cloud.

str957-135:60 luca.giommi$ curl -s -L -k --key -H "Content-type: application/json" -d '{"keys": ["nJets", "nlLeptons", "jetEta_B \\\\> 4///
“jetEta_1", "jetEta_2", "jetEta_3", "jetEta_4", "jetMass_B", "jetMass_1", "jetMass_2", "jetlMass_3", "jetMass_4", "jetlMassSof
tOrop_@8", "jetMassSoftDrop_1", "jetMassSoftOrop_2", "jetMassSoftOrop_3", "jetMassSoftOrop_4", "jetPhi_@", "jetPhi_1", "jetPhi_2
, "jetPhi_3", "jetPhi_4", "jetPt_@8", "jetPt_1", "jetPt_2", "jetPt_3", "jetPt_4", "jetTaul_B", "jetTaul_1", "jetTaul_2", "jetTa ///' ‘\\\ e N
ul_3", "jetTaul_%4", "jetTauZ_B", “jetTauz2_1", "jetTau2_2", "jetTau2_3", "jetTaul_4", "jetTauS_B", “jetTaud_1", "jetTau3_2", "je
tTau3_3", "_in-fTaLu_‘+ 1, "values": [2.8, 8.8, a.9223423633549999, -1.1428750753399999, 8.8, 0.8, 8.8, 155.239425659, 142.7096809 References Contact
g5, @.8, 8.8, 8.8, §3. 5ﬁ6 952856, 120.549567141, 6.8, 6.8, 8.8, 1.9385582176299995, -1.17742347717, 6.8, 6.8, 8.8, 451.41979950
S, 449.084394531199995, @.8, 0.8, 9.8, 09.29670@358391, 0.286615312099, 0.8, 0.8, 0.8, A.1645552065895, 0.19625715911466662, 6.8, [1] The HEP Software Foundation (HSF), A Roadmap for HEP Software and Computing R&D for the 2020s. 2017, arXiv:1712.06982 Iuca.giommi2@studio.unibo.it
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1F L Y3 oad to cache lode l=mode . .
20818-85-25 21:86:81.763295: | tensorflow/core/platform/cpu_feature_quard.cc:148] Your CPU supports instructions that this Tenso Conference Series 762.1 (2016)’ arXiv:1602.07226. ]
rFlow bingr-g was not compiled to use: SSE4.2 AVR AVXZ FMA [3] TenSOFﬂOW as a Service (TFaaS) URL: httpS//g|thUbCom/Vkuznet/TFaaS L CP

INFO[B193] load TF model Labe ls=/Users/ luca.giommi/Demo/keras_to_tensorflow/modell/sb_labels.cs Q4] URL: https;//drive,google,com/fiIe/d/llpwt9dOJCCb9EN3|miYKhExe|6dd4baO/vieW /

v NModel=/Users/luca.giommi/Demo/keras_to_tensorflow/modell/11_B4_model.hS.pb
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