Milli-charged particles (mCP) are new stable particles with much less electric charge than the electron and unknown mass. MilliQan is a new experiment that will search for mCP produced in LHC collisions. With charge of \(1 \times 10^{-3} e\), the deposited energy is \(6 \times 10^{-6}\) times that of a MIP. Long scintillator bars (5x5x80 cm) are used to detect \(1\) photo-electron (PE).

A 1x1x3m array of \(1200\) bars will be placed \(33\) m from the CMS interaction point in a well-shielded tunnel (the “drainage gallery”).

A mCP passes through \(3\) bars and leaves >1 PE in each within 10ns. This triple-coincidence is used to reduce backgrounds.

Introduction

Mill-charged particles (mCP) are new stable particles with much less electric charge than the electron and unknown mass. MilliQan is a new experiment that will search for mCP produced in LHC collisions. With charge of \(1 \times 10^{-3} e\), the deposited energy is \(6 \times 10^{-6}\) times that of a MIP. Long scintillator bars (5x5x80 cm) are used to detect \(1\) photo-electron (PE).

A 1x1x3m array of \(1200\) bars will be placed \(33\) m from the CMS interaction point in a well-shielded tunnel (the “drainage gallery”).

A mCP passes through \(3\) bars and leaves >1 PE in each within 10ns. This triple-coincidence is used to reduce backgrounds.

Expected Sensitivity

MilliQan will greatly expand parameter space explored for mCP above 100 MeV.

Calculations and detailed simulations show that with \(300 \text{ fb}^{-1}\) sensitivity to mCP with charge \(\mathcal{O}(10^{-3}) e\) can be achieved for masses \(\mathcal{O}(1)\) GeV, and charge \(\mathcal{O}(10^{-2}) e\) for masses \(\mathcal{O}(10)\) GeV.

Production cross-sections are conservative, considering only direct Drell-Yan and prompt \(Z\), \(Upsilon\), and \(J/\psi\) decays. Other hadronic production is ignored so far. Reach improves with \(3000 \text{ fb}^{-1}\) HL-LHC, even before possible detector upgrades.