Higher-twist dynamics in large p_{\perp} hadron production

François Arleo

LAPTH, Annecy

Heavy Ion Forum

CERN - September 2009

Outline

Motivations

Scaling laws in inclusive processes

Data analysis

- hadron, photon, and jet scaling properties from fixed-target to colliders
- comparing with NLO expectations
- interpretations

Phenomenology

- predictions in p p collisions at RHIC and LHC
- heavy ion collisions

References

Brodsky, Sickles, Phys. Lett. B668 (2008) 111

FA, Brodsky, Hwang, Sickles, in preparation

Dimensional analysis

Scattering amplitude $1 \ 2 \cdots \rightarrow \dots n$ has dimension

 $\mathcal{M} \sim [\text{length}]^{n-4}$

Consequence

In a conformal theory (no intrinsic scale), scaling of inclusive particle production

$$E \frac{d\sigma}{d^3p} (A B \rightarrow C X) \sim \frac{|\mathcal{M}|^2}{s^2} = \frac{F(x_{\perp}, \vartheta^{\rm cm})}{p_{\perp}^{2n_{\rm active}-4}}$$

where $n_{\rm active}$ is the number of fields participating to the hard process $x_{\perp} = 2p_{\perp}/\sqrt{s}$ and $\vartheta^{\rm cm}$: ratios of invariants

Dimensional analysis

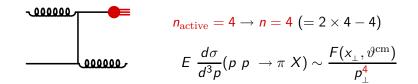
Scattering amplitude $1 \ 2 \cdots \rightarrow \dots n$ has dimension

 $\mathcal{M} \sim [\text{length}]^{n-4}$

Consequence

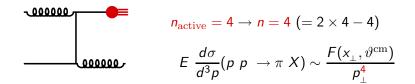
In a conformal theory (no intrinsic scale), scaling of inclusive particle production

$$E \frac{d\sigma}{d^3p} (A B \rightarrow C X) \sim \frac{|\mathcal{M}|^2}{s^2} = \frac{F(x_{\perp}, \vartheta^{\rm cm})}{p_{\perp}^{2n_{\rm active}-4}}$$


where $n_{\rm active}$ is the number of fields participating to the hard process $x_{\perp} = 2p_{\perp}/\sqrt{s}$ and $\vartheta^{\rm cm}$: ratios of invariants

Let's take the inclusive pion production as an example...

Francois Arleo (LAPTH)


Scaling laws in inclusive pion production

 Conventional pQCD picture (leading twist): 2 → 2 process followed by fragmentation into a pion on long time scales

Scaling laws in inclusive pion production

 Conventional pQCD picture (leading twist): 2 → 2 process followed by fragmentation into a pion on long time scales

• Direct higher-twist picture: pion produced directly in the hard process

$$n_{\text{active}} = 5 \rightarrow n = 6 \ (= 2 \times 5 - 4)$$

$$E \ \frac{d\sigma}{d^3 p} (p \ p \ \rightarrow \pi \ X) \sim \frac{F'(x_{\perp}, \vartheta^{\text{cm}})}{p_{\perp}^6}$$

Scaling laws in inclusive pion production

- Conventional pQCD picture (leading twist): 2 → 2 process followed by fragmentation into a pion on long time scales
- Direct higher-twist picture: pion produced directly in the hard process

Remarks

F(x_⊥) falls faster than F'(x_⊥) with x_⊥ from the larger number of spectator partons
 [Brodsky Burkardt Schmidt 1995]

$$F(x_{\perp}) \sim (1-x_{\perp})^{2n_{
m spectator}-1+2\Delta s}$$

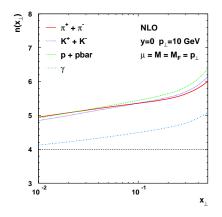
• Higher-twist processes naturally suppressed at large p_{\perp}

Higher-twist contributions possible at high x_{\perp} and not too large p_{\perp}

Sivers Brodsky Blankenbecler 1975

4 / 21

Scaling violations


QCD is not conformal

Scaling violations expected from

- running coupling
- evolution of parton densities and fragmentation functions

Scaling exponent greater than 4 even in leading-twist QCD

Scaling violations

- Slight increase of n^h with x_{\perp} from $n^h \simeq 5$ to 6
- Smaller exponent in the photon sector: $n^\gamma \simeq n^h 1$
 - lesser scaling violations due to (almost) no fragmentation component
- Almost no difference between hadron species

Francois Arleo (LAPTH)

Higher-twist in hadron production

Scaling violations

QCD is not conformal

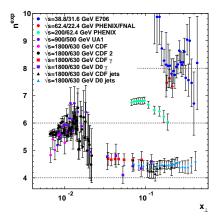
Scaling violations expected from

- running coupling
- evolution of parton densities and fragmentation functions

Scaling exponent greater than 4 even in leading-twist QCD

This analysis: systematic comparison between data and NLO expectations

• Scaling exponent extracted by comparing x_{\perp} spectra at two \sqrt{s}


$$n^{\exp}(x_{\perp}) \equiv -\frac{\ln\left[\sigma^{\mathrm{inv}}(x_{\perp},\sqrt{s_{1}})/\sigma^{\mathrm{inv}}(x_{\perp},\sqrt{s_{2}})\right]}{\ln\left(\sqrt{s_{1}}/\sqrt{s_{2}}\right)}$$

within the same experiment in order to reduce systematic errors

- Particle production at mid-rapidity
 - hadrons (π and h^{\pm}), prompt photons, jets
- Data sets
 - most recent measurements: CDF, D0, E706, PHENIX
 - ... as well as older ISR data

exp.	part.	\sqrt{s}	p_{\perp}	x_{\perp}	Ν
E706	π^0	31.6 / 38.8	2 – 9	$10^{-1} - 4.10^{-1}$	25
PHENIX/IS	R π^0	62.4 / 22.4	2 – 7	$2.10^{-2} - 2.10^{-2}$	3
PHENIX	π^0	62.4 / 200	2 – 19	$7.10^{-2} - 2.10^{-1}$	12
UA1	h^{\pm}	500 / 900	2 – 9	$8.10^{-3} - 2.10^{-2}$	18
CDF	h^{\pm}	630 / 1800	2 – 9	$7.10^{-3} - 10^{-2}$	5
CDF	tracks	630 / 1800	2 - 19	$7.10^{-3} - 2.10^{-2}$	52
CDF	γ	630 / 1800	11 - 81	$3.10^{-2} - 9.10^{-2}$	7
D0	γ	630 / 1800	11 - 107	$3.10^{-2} - 10^{-1}$	6
CDF	jets	546 / 1800	29 - 190	$10^{-1} - 2.10^{-1}$	9
D0	jets	630 / 1800	23 - 376	$8.10^{-2} - 4.10^{-1}$	23

Э

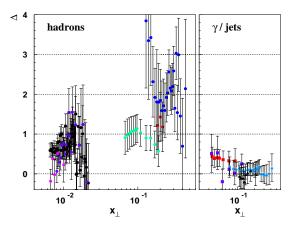
• Significant increase of the hadron n^{exp} with x_{\perp}

• $n^{\exp} \simeq 8$ at large x_{\perp}

- Huge contrast with photons and jets!
 - $n^{
 m exp}$ constant and slight above 4 at all x_{\perp}

ISR data

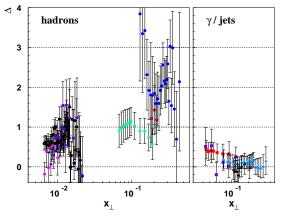
Exp.	h	$\langle x_{\perp} \rangle$	$n_{ m data}$	$\langle n_{\rm exp} \rangle$
ABCS	π^0	0.34 ± 0.05	5	5.7 ± 0.7
ABCSY	π^0	0.16 ± 0.04	15	8.1 ± 0.3
ACHM	π^0	0.20 ± 0.07	75	7.0 ± 0.1
BS 73	π^{\pm}	0.12 ± 0.02	5	9.0 ± 0.6
BS 75	π^{\pm}	0.15 ± 0.03	5	7.6 ± 0.2
	K^{\pm}	0.15 ± 0.03	5	7.2 ± 0.3
	$p/ar{p}$	0.15 ± 0.03	5	8.4 ± 0.3
CCR	π^0	0.22 ± 0.07	45	8.2 ± 0.1
CCOR	π^0	0.31 ± 0.08	27	6.2 ± 0.1
CCRS	π^{0} , π^{\pm}	0.20 ± 0.06	157	8.5 ± 0.1
CP	π^{\pm}	0.36 ± 0.11	11	7.6 ± 0.2
	κ^{\pm}	0.36 ± 0.11	11	7.6 ± 0.3
	p/\bar{p}	0.35 ± 0.11	10	8.8 ± 0.2
CSZ	π^0	$\textbf{0.28} \pm \textbf{0.05}$	9	$\textbf{6.2}\pm\textbf{0.7}$
R806	π^0	$\textbf{0.23} \pm \textbf{0.08}$	30	8.0 ± 0.2


Results compatible with older ISR data

Francois Arleo (LAPTH)

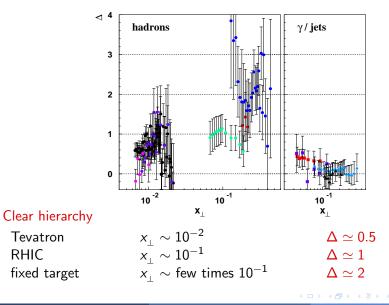
Higher-twist in hadron production

/ 21


Comparing to QCD

NLO calculations carried out within the experimental kinematics (p_{\perp}, \sqrt{s})

$$\Delta(x_{\perp}) \equiv n^{\rm exp} - n^{\rm NLO}$$

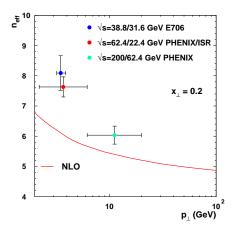

Comparing to QCD

• $\Delta^h \simeq 0.5 - 2$ from small to large x_{\perp}

- $\Delta^{\gamma/\text{jets}}$ consistent with 0
- Error bars include theoretical uncertainty $\mu = p_{\perp}/2$ to $2p_{\perp}$

Comparing to QCD

Resumation of large "threshold" logs $\ln(1 - x_{\perp})$ could explain part of the data. However,


- no effects in photons/jets despite the large x_{\perp}
- ullet data theory discrepancy even at small $x_{\perp}\sim 10^{-2}$

Most natural explanation

Higher-twist contributions $q\ \bar{q}\ \rightarrow g\ \pi$ and $q\ g\ \rightarrow q\ \pi$

- HT effects absent in photon and jet production
- scale dependence
- meson vs. baryon behavior

Pion scaling exponent extracted vs. p_{\perp} at fixed x_{\perp}

QCD slowly approaches n = 4 in the Bjorken limit (s → ∞, fixed x_⊥)
data – theory discrepancy larger at smaller p_⊥

Francois Arleo (LAPTH)

Pion scaling exponent extracted vs. p_{\perp} at fixed x_{\perp} 2-component toy-model

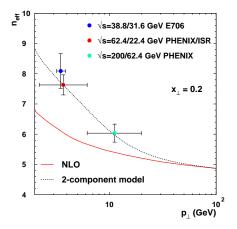
$$\sigma^{
m model}(pp
ightarrow\pi~{
m X}) \propto rac{{\cal A}(x_{\perp})}{p_{\perp}^4} + rac{{\cal B}(x_{\perp})}{p_{\perp}^6}$$

Define effective exponent

$$n_{\text{eff}}(x_{\perp}, p_{\perp}, B/A) \equiv -\frac{\partial \ln \sigma^{\text{model}}}{\partial \ln p_{\perp}} + n^{\text{NLO}}(x_{\perp}, p_{\perp}) - 4$$
$$= \frac{2B/A}{p_{\perp}^2 + B/A} + n^{\text{NLO}}(x_{\perp}, p_{\perp})$$

Heavy Ion Forum - (

Pion scaling exponent extracted vs. p_{\perp} at fixed x_{\perp} 2-component toy-model


$$\sigma^{
m model}(pp
ightarrow\pi~{
m X})\propto rac{{\cal A}(x_{\perp})}{p_{\perp}^4}+rac{{\cal B}(x_{\perp})}{p_{\perp}^6}$$

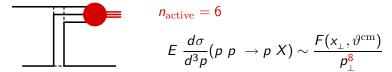
Define effective exponent

$$n_{\text{eff}}(x_{\perp}, p_{\perp}, B/A) \equiv -\frac{\partial \ln \sigma^{\text{model}}}{\partial \ln p_{\perp}} + n^{\text{NLO}}(x_{\perp}, p_{\perp}) - 4$$
$$= \frac{2B/A}{p_{\perp}^2 + B/A} + n^{\text{NLO}}(x_{\perp}, p_{\perp})$$

Limits

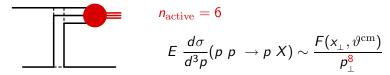
$$\begin{split} n_{\rm eff}(x_{\perp},p_{\perp}) &= n^{\rm NLO}(x_{\perp},p_{\perp}) & \text{for } B \ll A \times p_{\perp}^2 \\ n_{\rm eff}(x_{\perp},p_{\perp}) &= n^{\rm NLO}(x_{\perp},p_{\perp}) + 2 & \text{for } B \gg A \times p_{\perp}^2 \end{split}$$

• Fit gives $[B(x_{\perp})/A(x_{\perp})]^{1/2} \simeq 4 - 7 \text{ GeV}$

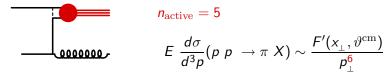

• Significantly reduced because of trigger bias effect

•
$$[B(x_{\perp})/A(x_{\perp})]^{1/2} \simeq 1 \text{ GeV}$$

Heavy Ion Forum – CERN


Baryon vs. meson production

Which scaling behavior for higher-twist baryon production? Take for instance proton production



Baryon vs. meson production

Which scaling behavior for higher-twist baryon production? Take for instance proton production

... which contrasts with pion scaling exponents

-

Protons minus pions results

	$n^p - n^{\pi}$
QCD NLO	$\simeq 0$
Higher-twist picture	$\simeq 2$
Experiment (ISR)	$\simeq 1$

Results consistent with a mixture of LT and HT "direct" components

Protons minus pions results

	$n^p - n^{\pi}$
QCD NLO Higher-twist picture	$\simeq 0$ $\simeq 2$

Experiment (ISR)
$$\simeq 1$$

Results consistent with a mixture of LT and HT "direct" components

Hadrochemistry as a useful probe of production dynamics at large p_{\perp}

Need for good hadron identification capabilities (π , K, p) at the LHC !

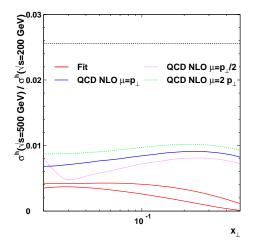
Francois Arleo (LAPTH)

Global fit

 $\mathit{n}^{\rm fit}(x_{\perp}, \textit{p}_{\perp})$ extracted from a fit to Tevatron, PHENIX, and E706 data

$$n^{\text{fit}}(x_{\perp}, p_{\perp}) = 4 + p_1 \left(-\log x_{\perp}\right)^{p_2} / \left(\log(p_{\perp}/\Lambda)\right)^{p_3}$$
$$\delta n^{\text{fit}} = \left[\sum_{i,j=0}^3 \frac{\partial n^{\text{fit}}}{\partial p_i} \delta p_i \times V_{ij} \times \frac{\partial n^{\text{fit}}}{\partial p_j} \delta p_j\right]^{1/2}$$

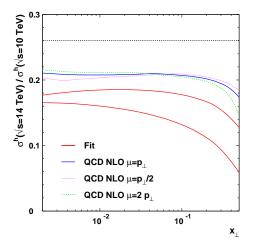
Global fit


 $\mathit{n}^{\rm fit}(x_{\perp}, \textit{p}_{\perp})$ extracted from a fit to Tevatron, PHENIX, and E706 data

$$n^{\text{fit}}(x_{\perp}, p_{\perp}) = 4 + p_1 \left(-\log x_{\perp}\right)^{p_2} / \left(\log(p_{\perp}/\Lambda)\right)^{p_3}$$
$$\delta n^{\text{fit}} = \left[\sum_{i,j=0}^3 \frac{\partial n^{\text{fit}}}{\partial p_i} \delta p_i \times V_{ij} \times \frac{\partial n^{\text{fit}}}{\partial p_j} \delta p_j\right]^{1/2}$$

Predictions at RHIC and LHC

$$R_{\sqrt{s_1}/\sqrt{s_2}}(x_{\perp}) \equiv \left(\sqrt{s_2}/\sqrt{s_1}\right)^{n^{\text{fit}}(x_{\perp},p_{\perp}=x_{\perp}\sqrt{s}/2)}$$


	$\sqrt{s_1}$	$\sqrt{s_2}$
RHIC	500 GeV	200 GeV
LHC	14 TeV	10 TeV

- Ratio well below the conformal limit expectation, even within NLO
- Possible breakdown of NLO visible between 200 and 500 GeV

Francois Arleo (LAPTH)

3 / 21

- Differences also expected at the LHC
- Still preliminary!

Francois Arleo (LAPTH)

3 / 21

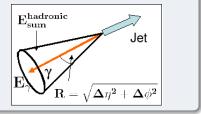
Leading twist

Hadrons accompanied by a significant hadronic activity \Rightarrow inside jets Higher twist

Color-singlet produced in the hard process \Rightarrow "isolated" hadrons

Leading twist

Hadrons accompanied by a significant hadronic activity \Rightarrow inside jets Higher twist


Color-singlet produced in the hard process \Rightarrow "isolated" hadrons

Idea: use isolation criteria to filter the leading twist component

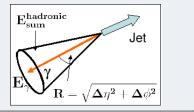
$$E_{\perp}^{\mathrm{had}} \leq E_{\perp}^{\mathrm{max}} = \varepsilon \ p_{\perp}^{h}$$

for particles inside a cone

$$(\eta - \eta_{\gamma})^2 + (\phi - \phi_{\gamma})^2 \le R^2$$

Leading twist

Hadrons accompanied by a significant hadronic activity \Rightarrow inside jets Higher twist

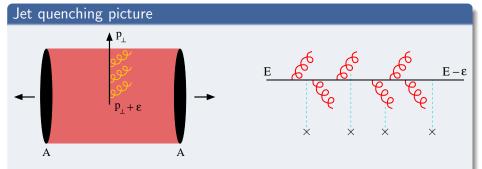

Color-singlet produced in the hard process \Rightarrow "isolated" hadrons

Idea: use isolation criteria to filter the leading twist component

$$E_{\perp}^{\text{had}} \leq E_{\perp}^{\max} = \varepsilon \ p_{\perp}^{h}$$

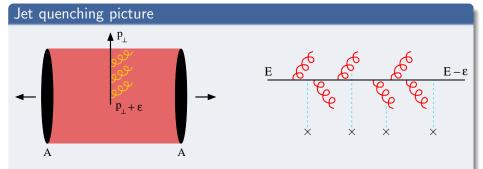
for particles inside a cone

$$(\eta - \eta_{\gamma})^2 + (\phi - \phi_{\gamma})^2 \le R^2$$


Consequence

Enhanced scaling exponent for isolated hadrons

$$n_{
m isolated}^h > n_{
m inclusive}^h$$


Francois Arleo (LAPTH)

Higher-twist in hadron production

Multiple scattering and energy loss of a colored parton in the dense QCD medium leading to a depletion of high p_{\perp} hadrons

[Bjorken 82; Gyulassy, Wang 92]

Multiple scattering and energy loss of a colored parton in the dense QCD medium leading to a depletion of high p_{\perp} hadrons

[Bjorken 82; Gyulassy, Wang 92]

What happens at higher twist?

- Dense medium acts as a filter of leading-twist components because of energy loss processes
- Only color-singlet compact configurations are able to go through the medium because of color transparency (small configurations r ~ p₊⁻¹)

- Dense medium acts as a filter of leading-twist components because of energy loss processes
- Only color-singlet compact configurations are able to go through the medium because of color transparency (small configurations r ~ p₊⁻¹)

Picture

 Mixture of leading twist and higher twist contributions in p p collisions

 $n^{\rm NLO} < n^{\rm exp} < n^{\rm HT}$

• Higher twist "rich" sample in central A A collisions

 $n^{\mathrm{exp}} \simeq n^{\mathrm{HT}}$

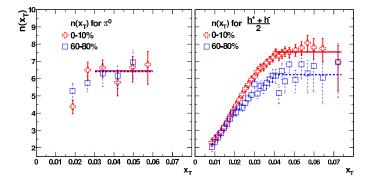
- Dense medium acts as a filter of leading-twist components because of energy loss processes
- Only color-singlet compact configurations are able to go through the medium because of color transparency (small configurations r ~ p₊⁻¹)

Picture

 Mixture of leading twist and higher twist contributions in p p collisions

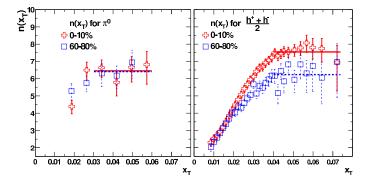
 $n^{\rm NLO} < n^{\rm exp} < n^{\rm HT}$

• Higher twist "rich" sample in central A A collisions


 $n^{\mathrm{exp}} \simeq n^{\mathrm{HT}}$

Consequence

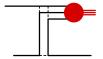
Smooth increase of n^{exp} from peripheral to central collisions


[Brodsky, Sickles 2008]

Centrality dependence of scaling exponent

Seen experimentally for charged hadrons (i.e. including protons)
 n^{central} − n^{periph} ≃ 2

Centrality dependence of scaling exponent

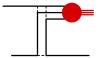

Seen experimentally for charged hadrons (i.e. including protons)
 n^{central} - n^{periph} ~ 2

- Why is this not seen for pions?
 - smaller HT contribution in pions than in protons at large x_{\perp}

HT contribution to meson vs. baryon

Proton production cross section :

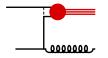
$$u \ d \rightarrow ud$$
 $n_{\text{spectator}} = 6 \Rightarrow 2n_{\text{spectator}} - 1 = 11$
 $u \ d \rightarrow (uud)\overline{u}$ $n_{\text{spectator}} = 4 \Rightarrow 2n_{\text{spectator}} - 1 = 7$



$$E \frac{d\sigma}{d^3p} (p \ p \ \rightarrow p \ X) \sim A \frac{(1-x_{\perp})^{11}}{p_{\perp}^4} + B \frac{(1-x_{\perp})^7}{p_{\perp}^8}$$

HT contribution to meson vs. baryon

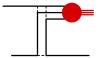
Proton production cross section :


$$u \ d \rightarrow ud$$
 $n_{\text{spectator}} = 6 \Rightarrow 2n_{\text{spectator}} - 1 = 11$
 $u \ d \rightarrow (uud)\overline{u}$ $n_{\text{spectator}} = 4 \Rightarrow 2n_{\text{spectator}} - 1 = 7$

$$E \frac{d\sigma}{d^3p} (p p \rightarrow p X) \sim A \frac{(1-x_{\perp})^{11}}{p_{\perp}^4} + B \frac{(1-x_{\perp})^7}{p_{\perp}^8}$$

Pion production cross section

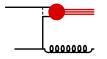
$$u \ d \rightarrow ud$$
 $n_{\rm spectator} = 5 \Rightarrow 2n_{\rm spectator} - 1 = 9$
 $u \ \bar{d} \rightarrow (u \ \bar{d})g$ $n_{\rm spectator} = 5 \Rightarrow 2n_{\rm spectator} - 1 = 9$



$$E \frac{d\sigma}{d^3p} (p \ p \ \rightarrow \pi \ X) \sim A \frac{(1 - x_{\perp})^9}{p_{\perp}^4} + B \frac{(1 - x_{\perp})^9}{p_{\perp}^6}$$

HT contribution to meson vs. baryon

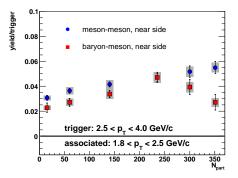
Proton production cross section :


$$u \ d \rightarrow ud$$
 $n_{\text{spectator}} = 6 \Rightarrow 2n_{\text{spectator}} - 1 = 11$
 $u \ d \rightarrow (uud)\overline{u}$ $n_{\text{spectator}} = 4 \Rightarrow 2n_{\text{spectator}} - 1 = 7$

$$E \frac{d\sigma}{d^3p} (p p \rightarrow p X) \sim A \frac{(1-x_{\perp})^{11}}{p_{\perp}^4} + B \frac{(1-x_{\perp})^7}{p_{\perp}^8}$$

Pion production cross section

$$u \ d \rightarrow ud$$
 $n_{\text{spectator}} = 5 \Rightarrow 2n_{\text{spectator}} - 1 = 9$
 $u \ d \rightarrow (u \ d)g$ $n_{\text{spectator}} = 5 \Rightarrow 2n_{\text{spectator}} - 1 = 9$



$$E \frac{d\sigma}{d^3p}(p \ p \ o \pi X) \sim A \frac{(1-x_{\perp})^9}{p_{\perp}^4} + B \frac{(1-x_{\perp})^9}{p_{\perp}^6}$$

HT contribution larger for baryons than for mesons at large x_{\downarrow} !

Associated multiplicity

Different behavior of same-side correlations using pion and proton triggers

pion trigger: linear increase of the multiplicity with centrality (N_{part})
 enhanced production due to medium-induced radiation (?)

proton trigger: decrease with centrality in most central collisions

direct proton production without associated particle production

Proton over pion suppression

Most challenging observation at RHIC

Protons less suppressed than pions in Au Au collisions

Parton energy loss leads to :

- stronger suppression for gluon jets than for quark jets
- stronger suppression for softer (i.e. steeper) fragmentation functions
 - \Rightarrow larger suppression in the proton channel than in the pion chanel

Proton over pion suppression

Most challenging observation at RHIC

Protons less suppressed than pions in Au Au collisions

Parton energy loss leads to :

- stronger suppression for gluon jets than for quark jets
- stronger suppression for softer (i.e. steeper) fragmentation functions
 - \Rightarrow larger suppression in the proton channel than in the pion chanel

Qualitative explanation

- Proton production
 - LT component suppressed due to energy loss
 - HT component not suppressed (color transparency)
- Pion production
 - LT component suppressed due to energy loss
 - HT component not suppressed but smaller than for baryons

$R^p_{_{\mathrm{AA}}} > R^\pi_{_{\mathrm{AA}}}$

Scaling laws

• powerful probe of hadron production dynamics

Analysis

- exponents systematically extracted from hadron, photon and jet data
- significant discrepancy in the hadron sector, esp. at large x_{\perp}
- supports a non-negligible higher-twist contribution in large p_{\perp} hadron production (first seen at ISR)

Phenomenology

- ratio of x_{\perp} spectra predicted in p p collisions at RHIC and LHC
- possible breakdown of NLO QCD could also be seen at these energies
- heavy-ion collisions : qualitative explanation of several features of RHIC data due to color transparency