

CNN Regression: train on one particle, apply to another

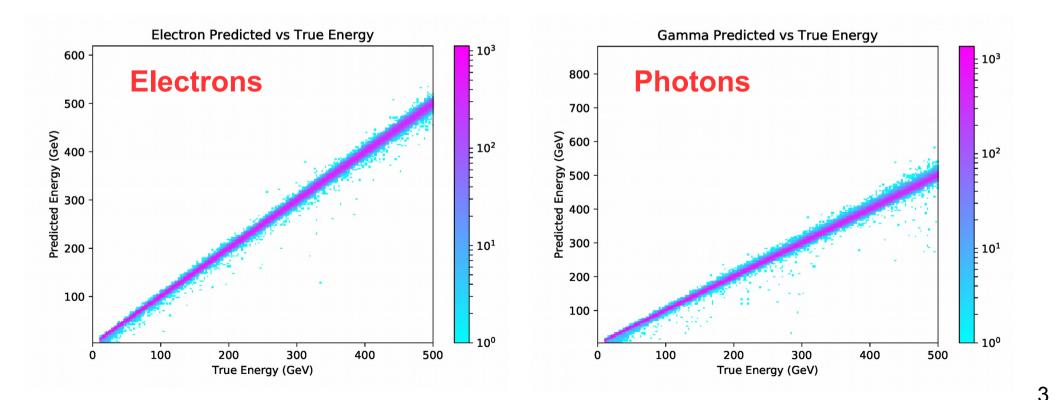
Dominick Olivito (UCSD)

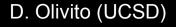
Setup

- Used some of Vitoria's code:
 - Jupyter notebook, Keras + Tensorflow backend
 - https://github.com/vitoriapacela/NotebooksLCD/blob/master/Reg_Ele_mse-checkpoint.ipynb
- CNN for energy regression, same architecture as NIPS paper (I think), details on bonus slide
- <u>Datasets</u>: V1, energy range 10-500 GeV, pre-split into train / val / test
 At caltech: /bigdata/shared/LCD/V1/
- Trained on 300k electron events
 - ~20 epochs (stopped and restarted to reduce validation size)
- Evaluated for 300k electrons, photons, pi0s, charged pions
 - For electrons, results comparable to NIPS paper
 - Slightly better resolution, maybe due to more training data / epochs
 - Expect to do reasonably well for others except charged pions

Pred vs True: Electrons, Photons

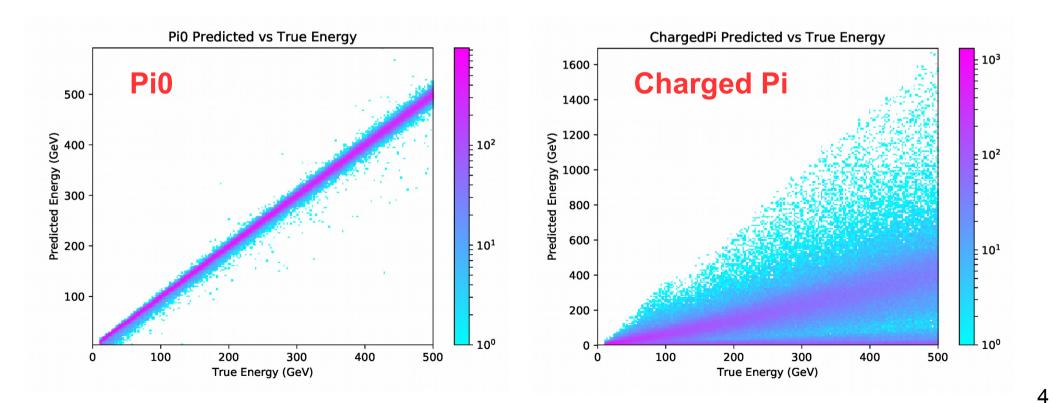
- Good agreement for electrons, used for training
- Also generally good for photons
 - Maybe a few more off-diagonal events, still small





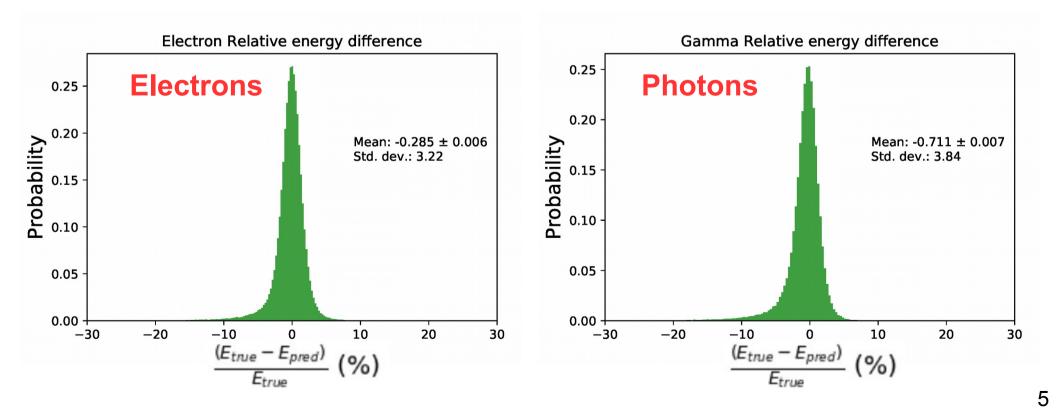
Pred vs True: Pi0, Charged Pi

- Decent agreement for Pi0, slightly wider diagonal
 - Expected since these look similar to photons
- Poor correspondence for charged pions
 - Expected since these have higher HCAL fraction
 - See a couple subpopulations, didn't look into these



Resolution: Electrons, Photons

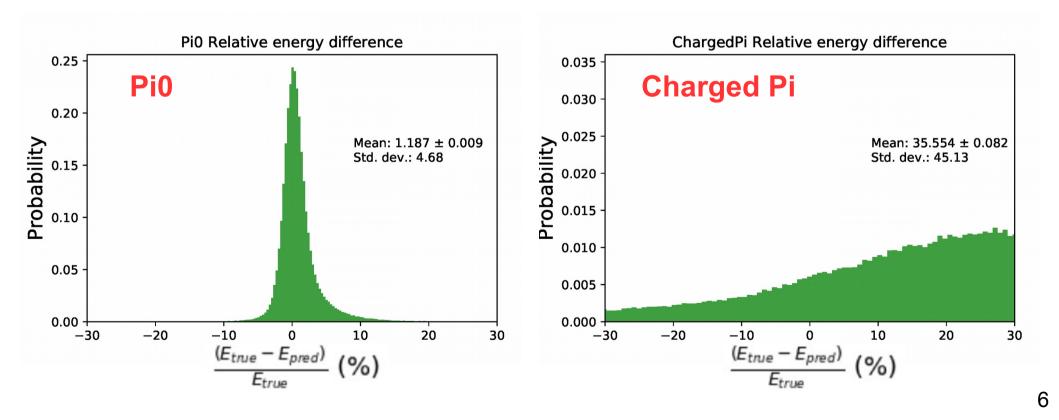
- Mean for electrons close to 0, sigma ~ 3.2% overall
- For photons, mean and sigma slightly worse, ~3.8%
- Integrating over full energy range for these plots



D. Olivito (UCSD)

Resolution: Pi0, Charged Pi

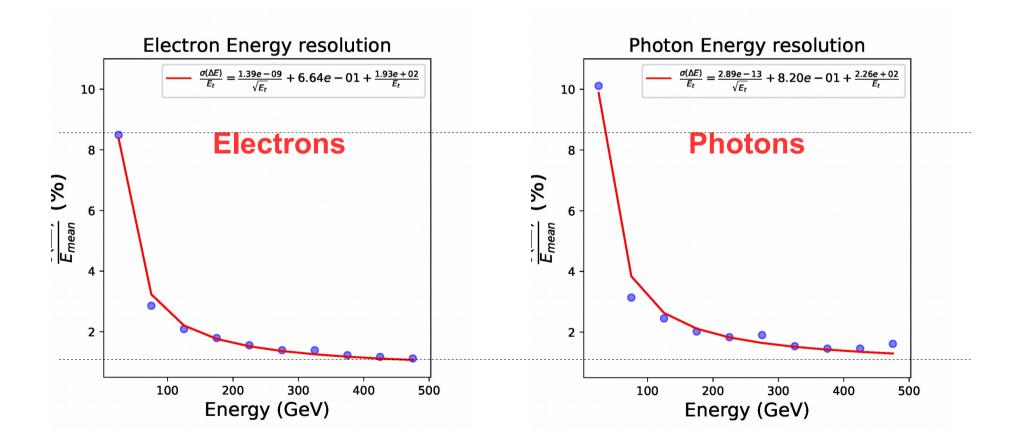
- Pi0 has a tail toward large values, underprediction of energy
 - Probably 2nd cluster not being used optimally
 - Wider sigma, ~4.7%, but affected by tail
- Charged pion has little correspondence to truth energy, as expected from 2D histogram



D. Olivito (UCSD)

Res vs Energy: Electrons, Photons

• Electron energy resolution slightly better than photons, especially at low energy



D. Olivito (UCSD)

Nov 17, 2017

Electron Resolution vs Paper

 See better resolution than reported in NIPS paper, especially at higher energy

CNN Model

b

0.75

с

131

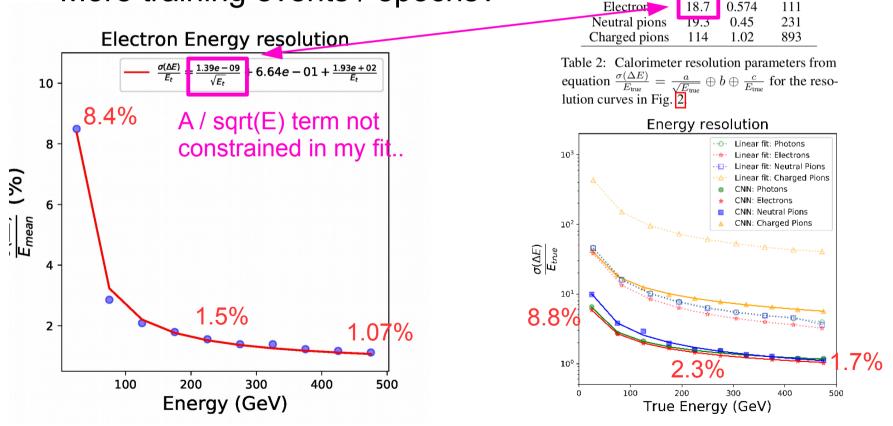
a

183

Particle Type

Photons

- I use RMS (np.std). Did paper use gaussian fit for sigma?
- Different sample?
- More training events / epochs?



D. Olivito (UCSD)

Training Observations (1)

- Loss drops rapidly after first epoch, then improves slowly
- Training loss is reported as being ~10x larger than val_loss
 - But when I evaluated MSE manually on training data, got numbers comparable to val_loss..

```
In [*]: hist = ele mse.fit generator(train, samples per epoch=tr samples,
                 nb epoch=50,
                 validation data = val,
                 nb val samples=10000, verbose=1,
                 callbacks=[EarlyStopping(monitor='val loss', patience=5, verbose=1, mode='min'),
                 ModelCheckpoint(filepath='/nfshome/olivito/lcd/caloimage 2017/ele reg mse {epoch:02d}.h5'
    Epoch 1/50
    Epoch 2/50
    Epoch 3/50
    Epoch 4/50
    Epoch 5/50
    Epoch 6/50
    73000/298498 [=====>.....] - ETA: 165s - loss: 199.3160- ETA: 188s
```

Training Observations (2)

- Pauses every 10k events to switch to next file
 - Using generator:
 - https://github.com/DannyWeitekamp/CMS_Deep_Learning/blob/master/CMS_Deep_Learning/io.py#L165
 - Is there a faster solution?
 - How were h5 file sizes (~150MB) chosen?

```
In [*]: hist = ele mse.fit generator(train, samples per epoch=tr samples,
                 nb epoch=50,
                 validation data = val,
                 nb val samples=10000, verbose=1,
                 callbacks=[EarlyStopping(monitor='val loss', patience=5, verbose=1, mode='min'),
                 ModelCheckpoint(filepath='/nfshome/olivito/lcd/caloimage 2017/ele reg mse {epoch:02d}.h5'
    Epoch 1/50
    Epoch 2/50
    Epoch 3/50
    Epoch 4/50
    Epoch 5/50
    Epoch 6/50
    73000/298498 [=====>.....] - ETA: 165s - loss: 199.3160- ETA: 188s
```

Conclusions

- Training CNN regression for one particle (electron) and applying to another works overall as expected
 - Best results for electrons, photons comparable
 - Tail of underprediction for pi0 but decent overall
 - Completely off for charged pions, as could be expected
- I see slightly better resolution for electrons than in NIPS paper
 Not sure which differences account for this yet
- What (if any) concrete items would be interesting for update of NIPS paper?

Bonus Slides

CNN Architecture

```
# ECAL input
input1 = Input(shape=(25, 25, 25))
r = \text{Reshape}((25, 25, 25, 1))(\text{input1})
model1 = Convolution3D(3, 4, 4, 4, activation='relu')(r)
model1 = MaxPooling3D()(model1)
model1 = Flatten()(model1)
# HCAL input
input2 = Input(shape=(5, 5, 60))
r = \text{Reshape}((5, 5, 60, 1))(\text{input2})
model2 = Convolution3D(10, 2, 2, 6, activation='relu')(r)
#model2 = Convolution3D(10, 2, 2, 6, activation='relu')(r)
model2 = MaxPooling3D()(model2)
model2 = Flatten()(model2)
# join the two input models
bmodel = merge([model1, model2], mode='concat') # branched model
# fully connected ending
bmodel = (Dense(1000, activation='relu'))(bmodel)
bmodel = (Dropout(0.5))(bmodel)
# oc = Dense(1,activation='sigmoid', name='particle label')(bmodel) # output particle classification
oe = Dense(1, activation='linear', name='energy')(bmodel) # output energy regression
# classification, will not use yet
# bimodel = Model(input=[input1,input2], output=[oc,oe])
# bimodel.compile(loss=['binary crossentropy', 'mse'], optimizer='sgd')
# bimodel.summarv()
# energy regression model
model = Model(input=[input1, input2], output=oe)
model.compile(loss=loss, optimizer='adam')
model.summary()
saveModel(model, name=name)
return model
```

CNN Summary

Layer (type)	Output Shape	Param a	# Connected to
input_3 (InputLayer)	(None, 25, 2	5,25) 0	
<pre>input_4 (InputLayer)</pre>	(None, 5, 5,	60) 0	
reshape_3 (Reshape)	(None, 25, 2	5, 25, 1) 0	input_3[0][0]
reshape_4 (Reshape)	(None, 5, 5,	60, 1) 0	input_4[0][0]
<pre>convolution3d_3 (Convolution3D)</pre>	(None, 22, 2	2, 22, 3) 195	reshape_3[0][0]
<pre>convolution3d_4 (Convolution3D)</pre>	(None, 4, 4,	55, 10) 250	reshape_4[0][0]
<pre>maxpooling3d_3 (MaxPooling3D)</pre>	(None, 11, 1	l, 11, 3) O	convolution3d_3[0][0]
<pre>maxpooling3d_4 (MaxPooling3D)</pre>	(None, 2, 2,	27, 10) 0	convolution3d_4[0][0]
flatten_3 (Flatten)	(None, 3993)	0	<pre>maxpooling3d_3[0][0]</pre>
flatten_4 (Flatten)	(None, 1080)	0	<pre>maxpooling3d_4[0][0]</pre>
merge_2 (Merge)	(None, 5073)	Θ	flatten_3[0][0] flatten_4[0][0]
dense_2 (Dense)	(None, 1000)	507400	0 merge_2[0][0]
dropout_2 (Dropout)	(None, 1000)	0	dense_2[0][0]
energy (Dense)	(None, 1)	1001	dropout_2[0][0]
Total params: 5,075,446 Trainable params: 5,075,446 Non-trainable params: 0	5M param	eters	

