

CERN experience with PM magnet design and assembly inside CLIC Final Focus system R&D and with other PM based magnet assembly.

M. Modena, CERN

Content:

- Some general experience of CERN in PM magnet design (information courtesy of P. Thonet)
- The experience within CLIC QD0 prototype
- The experience within CLIC SD0 prototype

Some recent CERN experience in designing and assembling PM based magnets (courtesy P. Thonet):

LINAC4 "iron-free" quadrupoles:

Permanent magnet block (Sm2Co17)

(14 units, G: 11-16T/m,

different for each quad)

Non magnetic shims (austenitic steel 316LN)

Non magnetic yoke (austenitic steel 316LN)

LINAC4 PMQS Quadrupoles (in DTL)

- "In vacuum" functioning
- 1.2-2.4 T integrated grad.
- Sm₂Co₁₇
- 316 LN structure

PM block Sm₂Co₁₇, as a flux generator

PM block to improve field quality

Return yoke low-carbon steel

"n-Tof" dipole: (0.25 T; 168 PM blocks !)

Pole tip to smooth in PM block magnetization direction

PM block Sm₂Co₁₇, as a flux generator.

Pole Fe-Co, to canalize magnetic flux and assure field quality.

Shim 316LN non magnetic austenitic steel but possibility to insert iron shims to adjust the sextupole field.

External yoke Titanium T40, non magnetic to hold the poles together and to guarantee the good geometry.

Vacuum brazing Gapasil filler.

- ASACUSA sextupoles (two units installed INSIDE the high vacuum spectroscopy beam line, G= 114480 T/m²)

Content:

- Some general experience of CERN in PM magnet design (information courtesy of P. Thonet)
- The experience within CLIC QD0 prototype
- The experience within CLIC SD0 prototype

CLIC Staged Scenario:

all info on CLIC at: http://clic-study.web.cern.ch/

CLIC Staging Baseline

New CLIC layout at 380 GeV

QD0 located INSIDE the Detectors (L=3.5 m layout):*

the main requirements for QD0:

Parameter	Value	QD0 study & design requirements :
Nominal field gradient	575 T/m	To develop a high gradient quadrupole towards a required nominal gradient value of 575 T/m.
Magnetic length	2.73 m	
Magnet aperture (for beam)	7.6 mm	Magnet design must be compatible with:
Manual Iran	8.25 mm *	-Active stabilization (i.e. vibration and weight)
diameter	* Including a 0.30 mm vacuum chamber thickness	-Presence of the post-collision line beam
Good field region(GFR) radius	1 mm	vacuum chamber (at its closer position: 35 mm from main beam axis)
Integrated field gradient error inside GFR	< 0.1%	- As much as possible compact design (to be compatible with an L* of 3.5 m, so minimizing
Gradient adjustment	+0 to -20%	the solid angle subtracted to the Detector)

"CERN-Vacuumschmelze Meeting" 21 Nov. 2017, M. Modena CERN

QD0 evolution of prototype design

"Pure electro-magnetic" approach:

(Opera 2D/3D simulations: courtesy of A.Vorozhtsov)

- **"8 shape" or "two leaves"** quad. design: (it permits to accommodate the postcollision beam vacuum chamber)

 magnetic saturation appears in the poles with both material proposed

Note: "Permendur" is a Fe-Co alloy (50%-50%) characterized by a higher magnetic flux saturation comparing to the classical low-carbon magnetic steels.

"Pure PM" approach: Halbach vs. SuperStrong:

	R=3.8 chai	[mm] (no mber)	R=4.125 [mm]		
Material	Sm ₂ Co ₁₇	$Nd_2Fe_{14}B$	Sm ₂ Co ₁₇	Nd ₂ Fe ₁₄ B	
Grad [T/m] "Halbach"	450	593	409	540	
Grad [T/m] "Super Strong"	564	678	512	615	

"Hybrid" design Version 1:

-Presence of PM wedges reduce strongly saturation in the poles

→Max Gradient increase of a factor 1.5-1.68

Of course, **tunability** is the other most interesting aspects of this configuration

	lw=5000 [A]			
Grad [T/m] Sm ₂ Co ₁₇	550			
Grad [T/m] Nd ₂ Fe ₁₄ B	615			

further evolution and final prototype design:

CÉRN

	lw=5000 [A]
Grad [T/m] Sm ₂ Co ₁₇	531
Grad [T/m] Nd ₂ Fe ₁₄ B	599

CLIC QD0 Main		100mm	Real magnet 2.7m	
Parameters		prototype		
Yoke				
Yoke length	[m]	0.1	2.7	
Coil				
Conductor size	[mm]	4×4	4×4	
Number of turns per coil		18×18=324	18×18=324	
Average turn length	[m]	0.586	5.786	
Total conductor	[m]	0 586×324×4=760	5 786×324×4=7500	
length/magnet	[111]	0.500^524^4 700	5.700A524A4 7500	
Total conductor mass/magnet	[kg]	26.8×4=107.2	265.2×4=1060.8	
Electrical parameters				
Ampere turns per pole	[A]	5000	5000	
Current	[A]	15.432	15.432	
Current density	$[A/mm^2]$	1	1	
Total resistance	[mOhm]	896	8836	
Voltage	[V]	13.8	136.4	
Power	[kW]	0.213	2.1	

design toward a full size QD0: a modular structure

<u>- Extrapolation of the QD0 short prototype design to a longer (full size) magnet</u> seems in principle possible, first basic mechanical assessments were done in this direction.

- Depending by CLIC R&D evolution and priorities, we could imagine to procure in the future a longer/middle-size prototype to investigate and check the aspects link to the performances of a "modular assembly" done by a very precise assembly of several shorter QD0 modules-like elements.

Procurement and assembly

procurement of main components:

procurement of main components:

Permendur part and PM blocks produced by Electric Discharge Machining (EDM) technique at Vacuumschmelze (D).

(Remind that each of the four PM block is in fact composed by 4 sub-blocks glued together.

A billet of Permendur was produced ad hoc in order to have the right dimensions, controlled quality and isotropy).

These components (plus the extracting/inserting tooling) were delivered in Summer 2011

CERN - METROLOGIE

Client : P. THONET

Machine : Ferranti

OK

Vue VUE-SECTION-10MM/C

Vue VUE-SECTION-90MM/C

x

Temperature : 20°C ±1°C

CONCLUSION CONTROLE

NON CONFORME

Controleur : Lilian REMANDET

Precision des mesures : ± 3 µm

VISA MME NOM

2

4

2

DATE

R2

R3

R2

Plan B

3

Les courbes rouges correspondent aux tolérances ±0.01

Plan B

Les courbes vertes correspondent au profil théorique

Les courbes bleues correspondent au profil mesuré

reception of main components at CERN Metrology Lab:

2/3

-0.96

0.04

0.132

-0.969

0.084

Metrologic Group - M8.1250,XG 13

Structure: Only central part (P.M. blocks, Permendur structure) of the QD0 prototype was modeled as shown in Figure 1.

FR

PM matorial type	Integrated gradient ∫Gdl [T]			
rm material type	MSRD	Calculated		
VACOMAX 225HR (Sm ₂ Co ₁₇)	15.4	15.6		
VACODYM 655HR (Nd ₂ Fe ₁₄ B)	20.3	21.2		

(magnetic measurements: courtesy of **C.Petrone and J. Garcia**)

final assembly of the magnet and magnetic measurements:

600

(magnet assembly: courtesy of : C. Lopez and P. Thonet)

(magnetic measurements: magnetic strength modulus)21

Content:

- Some general experience of CERN in PM magnet design (information courtesy of P. Thonet)
- The experience within CLIC QD0 prototype
- The experience within CLIC SD0 prototype

The CLIC Final Focus the Sextupole SD0 prototype:

Key aspects:

- <u>Manufacturing</u> (precision) of each Permendur sector, PM block, etc.
- Sorting of PM blocks
- <u>Assembly</u> of the sectors (magnetic forces between blocks, fragility of PM blocks,...)
- <u>Magnetic Measurements</u> (an ad-hoc coils will be developed by a PACMAN PhD student).
- Fiducialisation and alignment

The CLIC Final Focus the Sextupole SD0 prototype:

Field quality tuning: SD0

A sensitivity study of the the field quality versus error in the

The table below shows the appearance of undesiderable

multipole components when an error of 1 degree in the

(NOTE: this case is much worse than the case where the same

magnetization angle was also initiated:

magnetization angle appears in ONE block.

error appear in 6 symmetrically positioned blocks)

clc

	bn				an			
N (b)	60°	360°	1° error in only one block	N	(a)	60°	360°	1° error in only one block
1	0.00	-0.05	-8.05		1	0.00	-0.15	9.40
2	0.00	-0.01	-3.34		2	0.00	-0.01	6.48
3	10000.00	10000.00	10000.00		3	0.00	-0.01	4.01
4	0.00	0.00	-0.46		4	0.00	0.01	2.42
5	0.00	0.00	-0.17		5	0.00	0.01	1.48
6	0.01	0.00	0.57		6	0.00	0.00	1.37
7	0.00	0.00	0.34		7	0.00	0.00	0.96
8	0.00	0.00	0.31		8	0.00	0.00	0.55
9	-0.01	-0.05	0.20		9	0.00	0.00	0.30
10	0.00	0.00	0.18	1	L O	0.00	0.00	0.16
11	0.00	0.00	0.13	1	1	0.00	0.00	0.08
12	0.01	0.00	0.06	1	L 2	0.00	0.00	0.01
13	0.00	0.00	0.04	1	L 3	0.00	0.00	-0.01
14	0.00	0.00	0.02	1	L 4	0.00	0.00	-0.01
15	0.10	0.09	0.10	1	L5	0.00	0.00	-0.01

25

...Extra slides

QD0(s) in the CLIC layout:

procurement of main components: launched in Spring 2010

procurement of main components:

⁽²D/3D Drawings: courtesy of E. Solodko)

- The presence of the "ring" decrease slightly the Gradient (by 15-20 T/m) but it assure a very stiff assembly of the four poles and a precise housing for the PM blocks.

- EM Coils design would permit wide operation conditions: at 0 current Gradients will be respectively: $^{\rm \sim}$ 145 and $^{\rm \sim}175$ T/m.

(Note how in this Version 2 it was still planned to have water cooled coils, this was finally modify in order to improve the stabilization aspects.

reception of main components:

"CERN-Vacuumschmelze Meeting" 21 Nov. 2017, M. Modena CERN

reception of main components at Metrology Lab:

The "Single Stretched Wire", "Vibrating Wire" and "oscillating wire" MM Systems

