MOTIVATION	SOURCES	MITIGATIONS	SUMMARY

Potential CLIC-Vacuumschmelze Activity Mu-Metal

<u>Edu Marin¹</u>, D. Schulte¹, C. Gohil¹, M Buzio¹ emarinla@cern.ch

¹CERN, Geneva, Switzerland

November 21st, 2017 **CERN (Switzerland)**

Outline			
ΜΟΤΙVΑΤΙΟΝ	SOURCES	MITIGATIONS	SUMMARY
	000000	0000	000000

2 SOURCES

- Natural
- Technical
- **3 MITIGATIONS**
 - Passive
 - Active

MOTIVATION	SOURCES	MITIGATIONS	SUMMARY

Motivation

 e^-e^+ -beams (40 nm x 1 nm) collide at the IP

High quality magnets transport and focus particle beams from source to IP Dynamic field variations may deteriorate machine performance

MOTIVATION

SOURCES

MITIGATIONS

SUMMARY 000000

SOURCES

Natural sources expand from ULF (mHz) up to VLF (MHz)

Earth Field changes due to external and internal sources

 External: Solar Storms unlikely ≥ 2 nT/s @ CERN

↓ Geomagnetic Induced Currents (GIC)

• Internal: Seismic movements

*Figure taken from *Constable, C., Encyclopaedia of Geomagnetism and Geomagnetism*

MOTIVATION	SOURCES	MITIGATIONS	SUMMARY
	00000		
Technical			

Nearby Accelerator: Antiproton Decelerator and ELENA

from PS \Rightarrow Antiproton-deccelerator \Rightarrow ELENA \Rightarrow Experiments 26 GeV Target \Rightarrow 3.5 GeV - 5.3 MeV (Kinetic) \Rightarrow 100 keV

Zoom In @ Loc-1			
Technical			
MOTIVATION	SOURCES 000000	MITIGATIONS 0000	SUMMARY 000000

 $^{\dagger}\textsc{Figure}$ taken from Status and Prospects for the AD and ELENA, Lars V. Jorgensen / CERN / BE-OP

Vagabond Curre	ents		
Technical			
MOTIVATION	SOURCES 000000	MITIGATIONS 0000	SUMMARY 000000

A DC current of 1 A was flowing on the LEP vacuum chamber

FCCee is \approx 4 times larger thus $B_{\min} \approx$ 4 times smaller

*Slide taken from *Energy Calibration and Stray Fields at LEP* by J. Wenninger during Mini-Workshop

MOTIVATION	SOURCES	MITIGATIONS	SUMMARY
	000000		
Technical			

Technical Equipment: Two Beam Module

- Drive Beam (high current) perturbs Main Beam
- Waveguides may induce *B*-field variations (XBOX Exp)

MOTIVATION	SOURCES	MITIGATIONS	SUMMARY
	000000		
Technical			

Technical Equipment: XBOX Measurement Results

 Few tens of nT variations observed at the vicinity of the waveguide

MOTIVATION

SOURCES

MITIGATIONS

SUMMARY 000000

MITIGATIONS

Soft- μ magneti	c material Shielding	ç.	
Passive			
MOTIVATION	SOURCES 000000	MITIGATIONS ●000	SUMMARY 000000

The measured signal was attenuated by shielding the sensor with a

soft- μ magnetic material

Shielding Factor			
Passive			
ΜΟΤΙVATION	SOURCES 000000	MITIGATIONS ○●○○	SUMMARY 000000

• Soft-
$$\mu$$
 material
• Soft- μ material
Fo achieve $S = 10^3$
Pipe $\oslash = 10 \ cm$
Thickness $\Delta = 2 \ cm$
(1)

 $\Delta/2a$

• Conductive material To achieve $S = \frac{1}{e}$ at $f \ge kHz$ Pipe $\oslash = 10 \ cm$ Thickness $\Delta = 1 \ mm$

_

Ferromagnetic mate	rials		
Passive	000000		000000
MOTIVATION	SOURCES	MITIGATIONS	SUMMARY

Pros:

- High permeability $\mu_r \approx$ 10000 100000 (special treatment)
- Wider frequency range
- Multi-layer strategy
- Commercially available
- Sost €/Kg ?

Cons:

- Final properties after treatment (High T baking)
- Handling (soft⇒compromise properties) & Installation
- Cobalt contain (radio-protection)
- Shielding factor at low fields
- Saturation due to high field magnets
- Cost €/Kg ?

2-Coils Compensation					
Active					
MOTIVATION	SOURCES 000000	MITIGATIONS	SUMMARY 000000		

- $\bullet\,$ The current train-to-train feedback system against ground motion will remove the effects of stray fields changes $\leq 1~{\rm Hz}$
- For higher frequencies we need an alternative feedback to correct for the stray field itself

Proposed scheme

N/	OT	$I \setminus / \Lambda T$	ION	
		IVAI	1014	

SOURCES

MITIGATIONS

SUMMARY

SUMMARY

Summary			
MOTIVATION	SOURCES	MITIGATIONS	SUMMARY
	000000	0000	000000

- Natural sources seems to be ok
- Environmental and Technical sources are well above tolerances (μT)
- Passive shielding (μm -material) seems to be an effective solution
 - Few tens of km to be shielded 380 GeV Stage \Rightarrow 60 T assuming (1 mm thickness, $\emptyset \ 10 cm$)
 - Performance at low fields and frequencies (Material qualification)
 - Response under strong magnetic environment
 - Response under radiation
 - Treatment & Installation
 - Cost
- Currently setting-up a test-bench for low-*B* field measurements

MOTIVATION

SOURCES

MITIGATIONS

SUMMARY

BACK UP

MOTIVATION	SOURCES	MITIGATIONS	SUMMARY
	000000	0000	000000

Geomagnetic Induced Currents

DC offset in transformer causes: voltage harmonics; loss of reactive power; flux escape from core; overheating; destruction of insulation

ŧ

[†]Slide taken from *The Earth's Natural EM environment* by C. Beegan during Mini-Workshop

MOTIVATION	SOURCES	MITIGATIONS	SUMMARY
	000000	0000	000000
GIC Impact			

- Failure of Hydro-Quebec system in March 1989
 - Cascaded shutdown of entire grid in 90 seconds
 - 9 hours to restore 80% of operations
 - 5 million people without power (in cold weather)
 - Estimated C\$2Bn economic cost (incl. C\$12M directly to power company)
 - 2003: UK (2 transformers failed), Sweden (1 hour blackout), Finland, Canada, South Africa (15 transformers failed), Japan, Spain, New Zealand ...
- Faults in railway signalling
 - Lights switch to red
 - Points move
 - Communications loss
- Increase in pipeline voltages
 - Long-term corrosion effects
 - Economic loss

[‡]Slide taken from *The Earth's Natural EM environment* by C. Beegan during Mini-Workshop

MOTIVATION	SOURCES	MITIGATIONS	SUMMARY
			00000
Environmental			

Possible ELF-VLF (<100 kHz) sources

- Lighting, seismic,...
- VLF transmitters (Rosnay 400 kW)

- 50 Hz and harmonics
- Instrumental noise through cross modulation

$$\delta = \frac{1}{\sqrt{\pi\mu\sigma f}}$$

$$\begin{split} &\delta\approx 100~{\rm m}~{\rm @}~24~{\rm kHz}\\ &\delta\approx 500~{\rm m}~{\rm @}~1~{\rm kHz}\\ &\delta\approx 1500~{\rm m}~{\rm @}~100~{\rm Hz} \end{split}$$

Long wires act as antennas for VLF \Rightarrow distributes noises along the wire (CLIC can be seen as a 50 km long wire)

DC Trains			
Environmental			
MOTIVATION	SOURCES 000000	MITIGATIONS 0000	SUMMARY 000000

Stray fields from trains (DC case)

DC train noise as it travels from station 4 km along a track (there and back) recorded at 120 m from station H (Lowes, 1987)

Leakage current can be 10s % of traction current (Lowes, 2009)

Simple model for DC trains (Lowes, 2009)

Penetration under the ground

Skin depth

$$\delta = \sqrt{\frac{2}{\mu_0 \sigma 2\pi f}} = 503 \sqrt{\frac{1}{\sigma f}} \quad \text{(m)}$$

Ground conductivity σ is typically a few mS/m or a few tens of mS/m.

e.g. $\sigma = 4 \text{ mS/m}$, $f = 0.05 \text{ Hz} \rightarrow 35,6 \text{ km}$ $\sigma = 40 \text{ mS/m}$, $f = 0.05 \text{ Hz} \rightarrow 11,2 \text{ km}$

t

[†]Slide taken from talk *Sources: Ultra Low Frequency (ULF) waves* by B. Heilig at Mini-Workshop on Impact of Stray Fields on Accelerators

MOTIVATION	SOURCES	MITIGATIONS	SUMMARY
			000000
Environmental			

ELENA Ring: Present Accelerator

- ELENA receives 5.3 MeV antiprotons from AD ring
- Delivers 100 keV anti-protons to the experiments
- *B*ρ=457 Gm
- $B_{\rm Earth}$ of 0.5 G deflects beam by $\approx 1 \text{ mrad}$
- Transfer lines pass by $\approx G$ solenoids of experiments

MOTIVATION	SOURCES 000000	MITIGATIONS 0000	SUMMARY 000000	
Environmental				
2-Coils Compensation				

- Signal induced by a sinusoidal magnetic field with frequency 25 Hz
- $\bullet\,$ An error of $\pm 10\%$ was included

Parameter	Value
Number of turns	10
Stray field amplitude	5 nT
Stray field frequency	25 Hz
Radius of coils	10 cm
Length of coils	30 cm
Permeability of coil core	0.126 H/m

- Reduction of about 90%
- Some residual signal

MOTIVATION	SOURCES 000000	MITIGATIONS 0000	SUMMARY 000000
Environmental			
Working pri	nciple		

- Magneto-static shielding
- Eddy current shielding

The choice of material depends on

- $\Delta B \Rightarrow$ shield saturation Cost
- Frequency

Thickness of the passive shield must be greater than skin depth

$$\delta = \sqrt{\frac{1}{f\mu_0\mu_r\sigma}} \tag{2}$$