

System's Performances in Bl

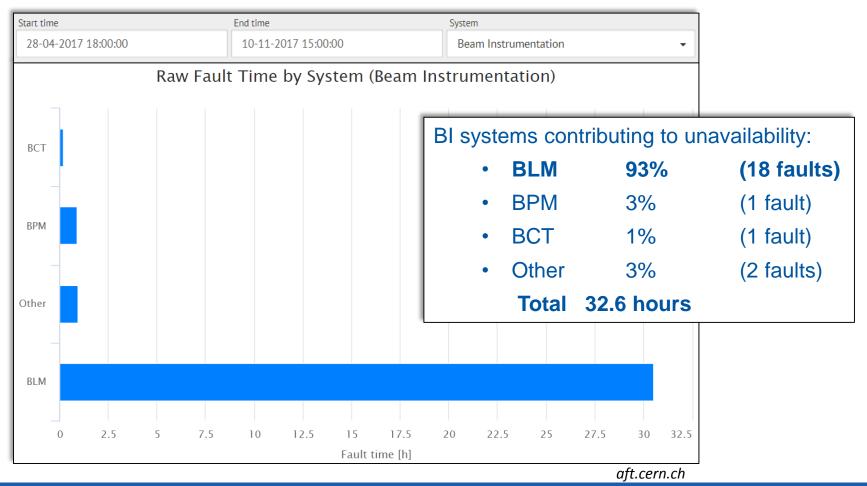
Volker Schramm on behalf of the BI group

Special thanks to:

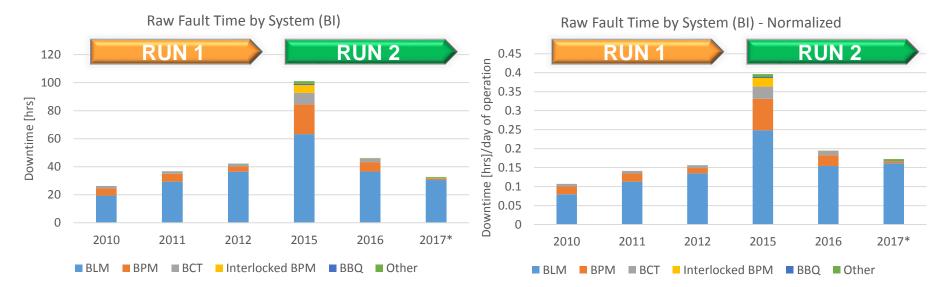
Enrico Bravin, Ewald Effinger, Rhodri Jones, Tom Levens, Georges Trad, William Viganò, Manfred Wendt, Christos Zamantzas

Volker Schramm BE-BI-BL volker.schramm@cern.ch

07/12/2017


- AFT statistics 2017 & previous years
- Faults analysis
- BI past and future efforts
- Conclusion

AFT statistics - 2017

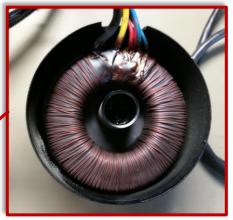

Registered 22 BI faults in 2017 which account to 32h LHC downtime

The main unavailability contributor is the Beam Loss Monitoring system

AFT statistics – previous years

- BI availability increased for the 2nd year in a row (all systems!)
- 2017: Highest availability ever achieved for BPMs and BCTs
 - Strong positive trend since 2015 (consistent AFT recording since 2015)
- The BLM normalized downtime is almost constant during 2016 and 2017

→ Focus on the performance of the BLM


*2017: 28/04 - 10/11

Faults Analysis - BLM

	.017.			
Issue			2017	
	#	%	downtime	%
SEU (surface)	4	22%	04h 40m	15%
VME Power Supply Fail	1	6%	07h 47m	25%
Connection Lost: FESA/VME/CPU	1	6%	00h 04m	0%
HV Power Supply Drop				
HV Power Supply Noise				
Sanity Error: Communication/VME	4	22%	01h 23m	5%
Sanity Error: IC	1	6%	00h 29m	2%
Sanity Error: LIC				
Sanity Error: SEM	3	17%	13h 54m	46%
BLECF optical link issues	4	22%	02h 13m	7%
BLETC optical link issues				
Other optical link issues				
Other				
	18		1d 06h 32m	

Detailed BLM faults in 2017:

Failed transformer

~50% Sanity Check related faults

Failed Connectivity Test

Faults Analysis - BLM

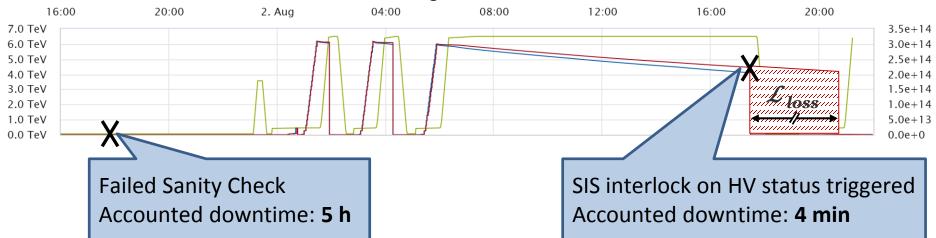
Detailed BLM faults of previous years: separate AFT & BI-BL accounting

- Throughout all years high number of Optical Link and Sanity Check related faults
- Own accounting helps to identify weak parts and to react earlier (e.g. Optical Link)

Issue	20	12 2015		15	2016		20	17
	AFT	Jira	AFT	Jira	AFT	Jira	AFT	Jira
SEU (surface)	3	3	2		1		4	
VME Power Supply Fail	1	1			1		1	
Connection Lost: FESA/VME/CPU		6	7		1		1	
HV Power Supply Drop		4						
HV Power Supply Noise			3		2			
Sanity Error: Communication/VME	3	9	6		2		4	
Sanity Error: IC		3	1				1	
Sanity Error: LIC		6						
Sanity Error: SEM	5	10	5		4		3	
BLECF optical link issues	1	7					4	
BLETC optical link issues	3	11	1		4			
Other optical link issues	2	10						
Other	2		2		1			
	25*	70	27		16		18	
	1d 12h 28m		2d 15h 16m		1d 12h 36m		1d 06h 32m	

3 main fault cases:

- Power supplies: Constant low failure rate
- SEMs (at the dump):
 Constant high failure rate

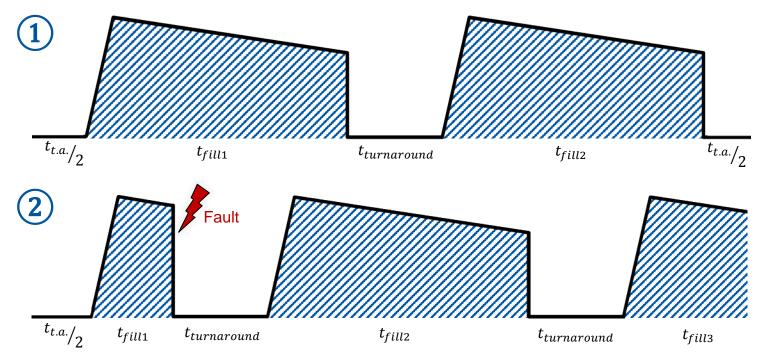

Decreased, then in Run2 constant low failure rate

> Optical links:

Faults Analysis – 1 example

2 BLM failures within 30 hours this August:

- System fault detected before it can lead to a dump (function fulfilled)
- *L*_{loss}? → 'Equivalent to 5hours of scheduled operation'



- Fault lead to unscheduled beam dump (false dump)
- \mathcal{L}_{loss} ? \rightarrow 'Equivalent to >>4min of scheduled operation' ?
- How to quantify the luminosity loss?
- How to scale availability and luminosity?

Faults Analysis – 1 example

Example of two 12-hour fills as intended and the same scenario with a fault in the first fill:

By using intensities of a typical 12h13min fill at 6.5 TeV [03/09/2017,4:17am] as well as $t_{turnaround} = 6.2h$ the integrated area below the fills is **≥14%** bigger for the 1st scenario

CFR

It is worth to invest in diagnostics and continuous system checks

Past Efforts – LHC BLM

Channel with

amage Risk and

10pA check

Channel DR 10pA

0=4.5e-9 w=2.94e-7

Card

2.L.1

4.L.6

7.C.5

3.R.14

Channel with

Damage Risk and

Mission check

Channel DR M

Q=7.55e-7 w=1.26e-7

CF Ser

0488

0371 0328

0492

0642 0591

0803 0682

Channel with

Damage Risk

Channel DR Y

Q=4.24e-6 w=1.77e-9

TC Ser

16429131501618539521

10664523978582786561

10736581572621763841

9151314503787382017

and Yearly check

- **2005** > Dependability analysis:
 - Prediction
 - \circ FMECA
 - o FTA
 - o Sensitivity Analysis
- 2008 > Redesign of the backend mezzanine
- **2012** > Preventive system fault analysis
 - Daily automatic mails
 - Jira failure logging
- **2013** \succ 1st big maintenance intervention:
 - Preventive exchanges: Cables, detectors, cards, fans
 - Acquisition electronics modification & recalibration
 - Clean-up: Optical adaptors, connectors
 - Shuffle of optical links & firmware modification
- **2017** > Dependability analysis update (PhD)

Damage Risl

01 DR

0=502e-6w=436e

Digital FEE with

Damage Risk and

Mission check

DigitalFEE_DR_M

Q=193e-8 w=3 22e-9

CS Ser

1743793781554746342

16861477063165457409

14267403677825781249

7854277808467274753

BEE with

Logging check

BEE DR I

Q=515a-13 w=1.85a-9

Optical link errors

CRC COMP

BEE with Damage

BEE DR M

=924e-11 w=1.54e-1

Damage Risk and Risk and Mission

Crate with

Damage Risk and

Logging check

Crate DR

Q=1.52a-12 v=5.89a-

LK1 Err

BABABAB

Gianluca Guaglio, PhD thesis, 2005

LK2 Err

Crate with

Damage Risk and

Mission check

0=6.74e-9 w=1.12e-9

LK1 Lost

To run with Qave

igital FEE with

Damage Risk

and 10pA check

DichAFEE DR. 10pf

Q=3.45a-11 w=2.24a-9

(LS1)

Level

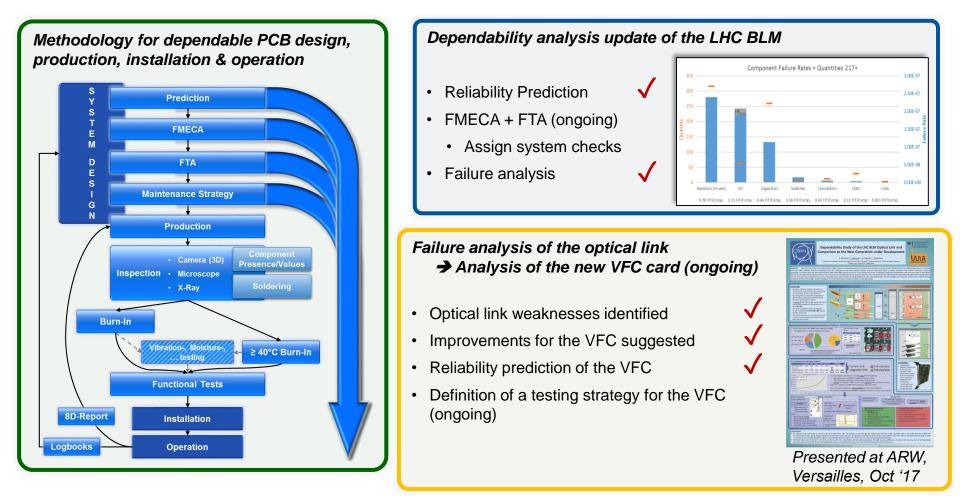
Level

LK2 Lost

FID COME

A B

0

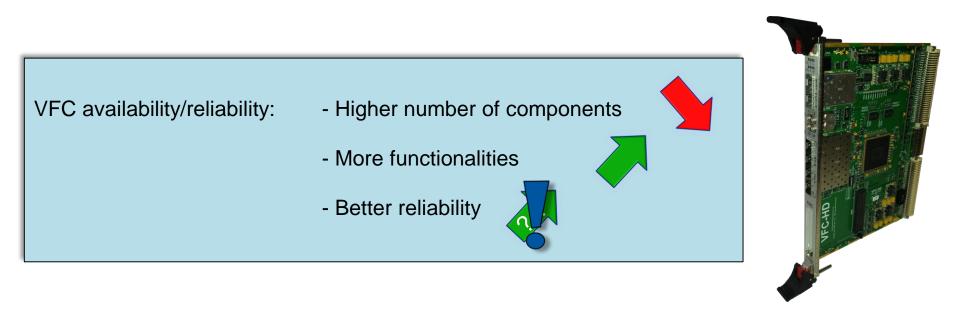

0 0

0 0

0

Past Efforts – LHC BLM

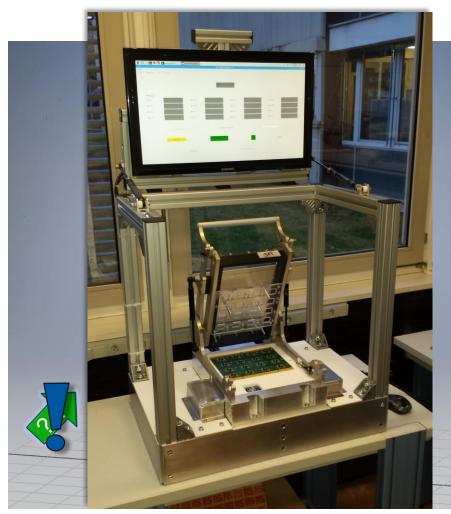
Ongoing PhD to study and improve the LHC BLM system. Results will be projected to enhance the injector's upgrade and the new VFC processing card:



Future Efforts – VFC upgrade

Installation of the VFC card to upgrade the surface processing card

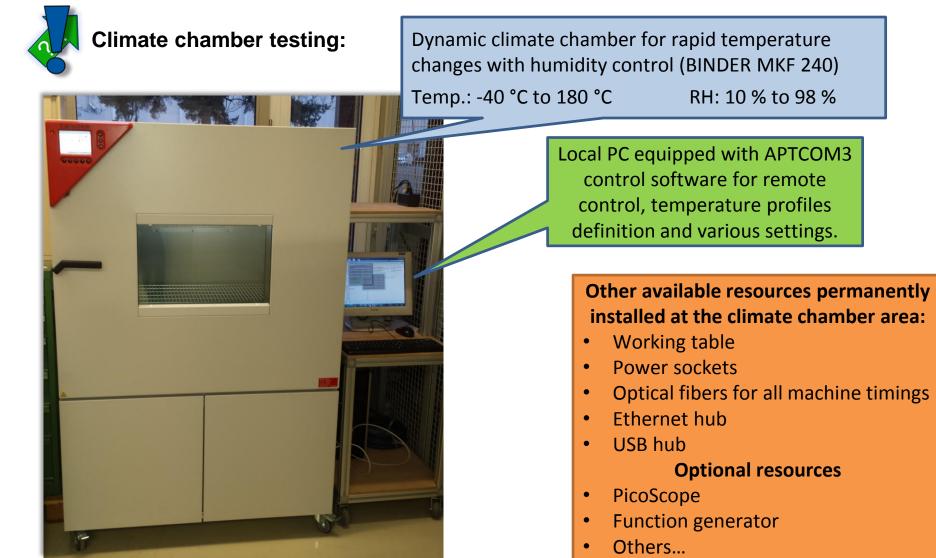
- Eliminate system weaknesses
- Adding extra functionalities
- Testing and qualification prior to installation ! Demonstrate low failure rate !



Future Efforts – Testing

Functional and reliability tests:

Functional tester for the VFC-HD card



Reliability tester of VFC power supplies

Future Efforts – Testing

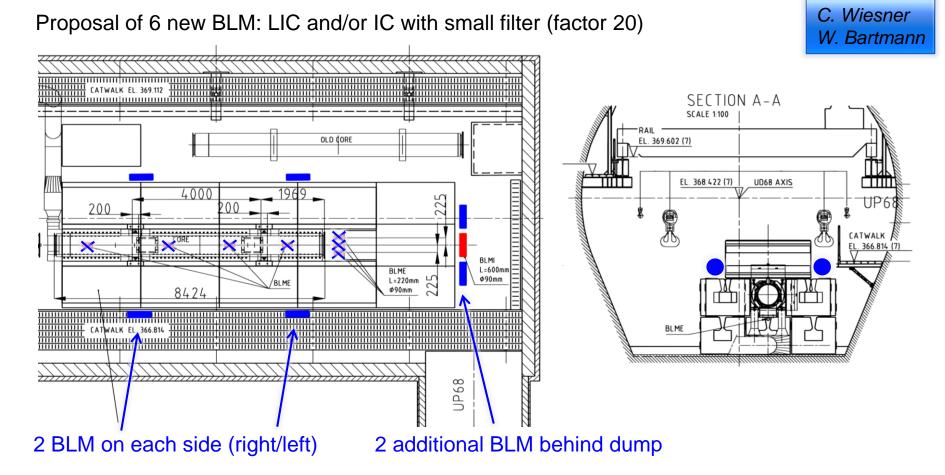
Future Efforts – Sanity Check

Optimising the Sanity Check sequence:

- Merge 5 sequence steps into 4
- Enable to perform checks of only 1 group
- Upgrades of the code in the long term

🍝 Status Appli	cation								-		Х
Beam monitor											
Accelerator N	lode:					Beam 1 Pre	sent:				
Beam Mode:											
beam woue.						Dedili 2 Pre	sent.				
					Global Status						
Check being run at the moment 06.12.2017 10:47:07											
	Checks	s connected to BIS Expert checks							BIS team	m	
	MCS	Sanity	Checks								
			Internal							External	
Crates	Consistency	Connectivity	Beam Permit	CFC_TEST	RST_DAC	RST_GOH	RST_FPGA	STOP_HV	MANUAL_CTR	Beam Per	mit
SR1.L											
SR1.C											
SR1.R											
SR2.L											
SR2.C											
SR2.R											
SR2.I											
SR3.L											
SR3.C											
SR3.R											
SX4.L											
SX4.C											
SX4.R SR5.L											
SR5.L SR5.C											
SR5.C SR5.R											
SR5.R SR6.L											
SR6.C											
SR6.R											
SR7.L											-
SR7.C											
SR7.R											
SR7.E											
SR8.L											
SR8.C											
SR8.R											
SR8.I											
Legend: OK <12h OK Block BP BP removed Under Test No Data											

- → 20% time saving
- → Up to **75%** time saving


Checks sequence:

- 1. Each point center crate
- 2. Each point left crate
- 3. Each point right crate
- 4. Injection crate
- 5. Extra crate in point 7

\rightarrow Merge steps 4 and 5

Future Efforts – Dump Upgrade

 \rightarrow Exact positions have been defined with ABT. Radiation tolerant cabling to be added locally.

Conclusion

- In 2017 a <u>better availability</u> was achieved than in previous years
 - Very strong performance of BCTs and BPMs
 - Future efforts need to focus on the BLM which contributed >90% of BI downtime
- Various measures are put in place:
 - Constant maintenance and exchange of less reliable systems
 - Preventive system fault analysis & failure logging
 - System upgrades which include:
- Functional tests before installation
- Component reliability testing
- System burn-in-/reliability testing
- Diagnostics and performing system checks can reduce availability <u>but</u> can in the same way increase luminosity

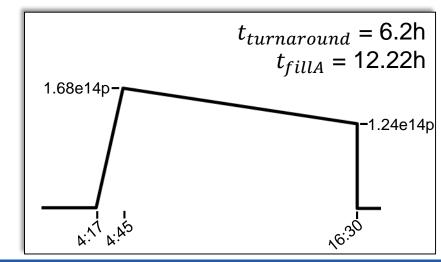
Thank you for your attention

www.cern.ch

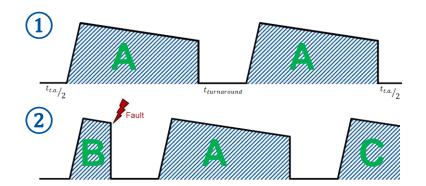
Calculation of the ~ 14% reduced luminosity:

•
$$\mathcal{L}_{loss} = 2A - (A + B + C) = A - B - C$$

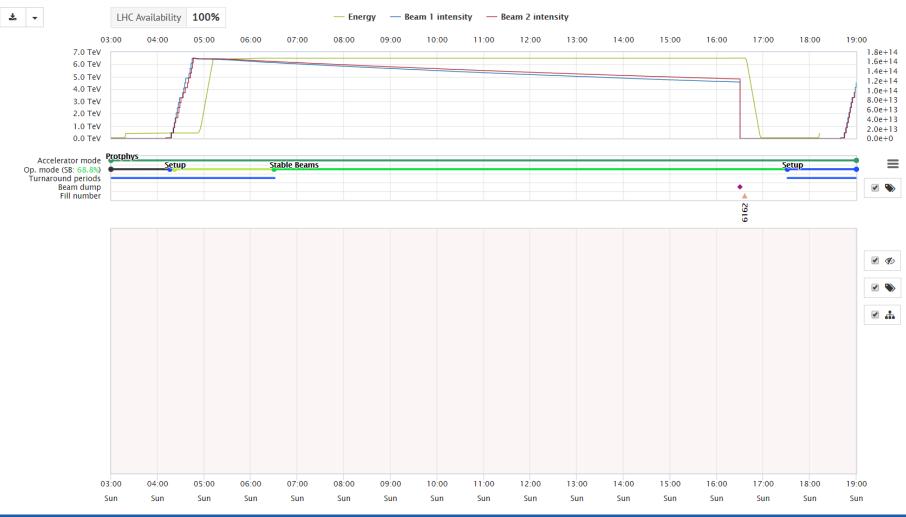
•
$$t_{total} = 2 * 12h + 2 * 6.2h = 36.4h$$

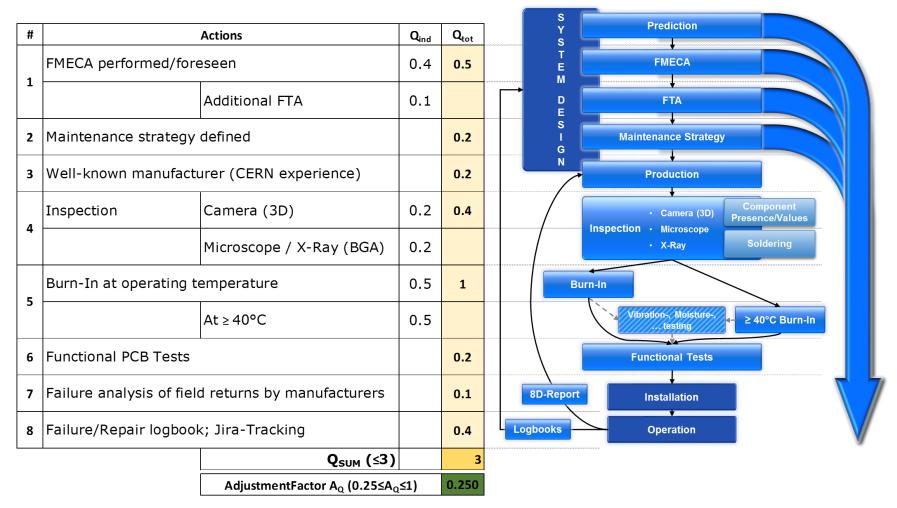

•
$$t_C = 36.6h - 12h - 2.5 * 6.2h - t_B \rightarrow t_B + t_C = 9.1h \rightarrow \text{Highest } \mathcal{L} \text{ for } t_B = t_C = 4.55h$$

•
$$A = \frac{0.46h*1.68e14p}{2} + 11.75h*1.24e14p + \frac{11.75h*0.44e14p}{2} = 17.55e14h*p$$

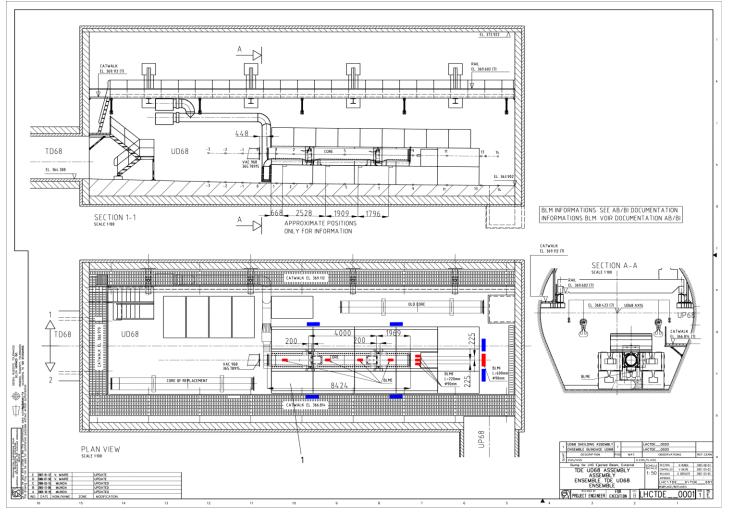

•
$$B = C = \frac{0.46h + 1.68e14p}{2} + 4.08h + 1.24e14p + \frac{4.08h + 0.44e14p}{2} = 6.35e14h + p$$

• (1)
$$2A = 35.1e14$$
 (2) $A + B + C = 30.24e14$


$$> "\mathcal{L}_{loss}" = 4.85e14 \qquad \approx 14\%$$



Example of a 12-hour fill at 6.5 eV:



Methodology PCB design:

Dump Region with BLM:

C. Wiesner W. Bartmann

