

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Cables and Terminations for Pulsed Power

Chris C. Jensen March 12, 2018

Outline

- Coaxial cable and wire construction
 - Controlled impedance, controlled gradient
 - Pulse distortion
 - Pulsed vs DC
- Partial Discharge
- Terminations
- Examples
 - Kicker pulser
 - High voltage pulsed electrostatic quad

Coaxial Cable construction

Two examples of coaxial cable construction

1) semi-conductive coated conductors to provide field grading for irregular surfaces

2) low loss cable with shield layer bonded to outside of dielectric to exclude air and very smooth center conductor

Coaxial Cable construction

- Well defined impedance
 - Z0=Sqrt[μ/ϵ]/2 π * Ln[r_o/r_i] for coaxial
- Defined impedance also controls electric field stress
 - Emax = V /($r_i Ln[r_o/r_i]$) at center conductor for coaxial cable
 - At outer conductor may still be high $E = V / (r_o Ln[r_o/r_i])$
 - Assumes surface of conductors is perfectly smooth
- Characteristic "time constant" for lossy cables [1],[2],[3]
 - Skin effect and dielectric losses limit rise time at end of cable
 - Cables with semi conductive coating have additional losses
 - $V_{out} = \text{Erfc} [1/\text{Sqrt}[t/t_o]]$ for a rectangular pulse, only skin effect $t_0 = (A I)^2$ where I is length of cable and $A = \text{Sqrt}[\epsilon/(2 \sigma_c)] (1/r_i+1/r_o)/(2 \text{Ln}[r_o/r_i])$ is a loss factor

Coaxial Cable Construction

Times AA5966 RG/U 58 -RG/U 213 1.00 0.90 0.80 0.70 Normalized Response 0.60 0.50 0.40 0.30 0.20 0.10 0.00 -0.10 -10 0 10 20 30 40 50 Time (ns)

Comparison of calculated response for 100 m length of cable

Plot of Erfc $[1/Sqrt[t/t_o]]$ for several values to t_0

Values for Sqrt[t₀] with 100 meters of cable: RG/U 58 ~ 30 10⁻⁶ Sqrt(sec) , RG/U 213 ~ 21 10⁻⁶ Sqrt(sec), RG/U 220 ~ 11.9 10⁻⁶ Sqrt(sec), Times 5966 best fit 12.3 10⁻⁶ Sqrt(sec)

🛠 Fermilab

Coaxial Cable construction

- Why do cables or terminations fail?
 - Electric field causes ionization of a dielectric
- Discharge in air is usually the problem for long life designs
 - Air has a lower breakdown than solids or liquids
 - Creates ozone which is chemically active and attacks insulation
 - Even if choose a good cable a concern at termination
- Two solutions
 - Remove air space completely, smooth surfaces
 - Good cable construction
 - Difficult to do on parts that need to come apart
 - Make air space bigger so it can easily be filled with something
 - Seems counter-intuitive to some
 - Usually the issue at termination

Wiring Description – An Aside

- When to use insulated wire for point to point connections?
- Inside cabinets and chassis if there is a space constraint?
 - The enclosure is providing safety and security
 - Maybe for DC wiring but still need to pay attention to routing
- Between cabinets?
 - Not if you need a shield around the wire for security or safety
- For a low impedance connection?
 - Could use a coax cable, but ends can be tricky
 - Change your layout so don't have long paths and run wire
- My personal suggestion is to almost never use insulated wire in a pulsed high voltage application
 - Use tubing and solder on large wire ring terminal
 - No insulation to fail, make smooth radius on wire terminals
 - For low rms current, can flatten tubing at end, remove sharp edges

🚰 Fermilab

Cables and Grounding – An Aside

- Ground currents are the reality of multiple return paths
 - Many applications will require both the load and the power supply to be grounded locally for safety and security
 - The return path and the safety ground are connected at each location
- To have low ground current need to consider resistance, inductance and capacitance between return and ground

Termination

- Commercial vs. Custom
 - Low voltage, ~ 5 kV, there are several standardized connections but attention to detail on assembly still required
 - HN, SHV, 10kV SHV
 - SHV and 10 kV SHV still DC rated parts, HN 50 Ohm, few kV_{rms}
 - Fermilab avoids MHV due to safety concerns
 - High voltage, there are very few standards, but still commercial
 - Lemo Y series, GES S150 series, Isolation Design, Dielectric Science, FID GmbH
 - Most high voltage connectors are rated for DC and low current
 - Probably not controlled impedance, but can still be used
 - Test short cable and connection for partial discharge with commercial equipment, 50 Hz / 60 Hz / 400 Hz
 - May not be sufficient to determine suitability, fast pulses distribute fields differently
 - A successful corona inception test for low frequency is practical starting point

Termination

10

- Custom Terminations
 - Field boundary conditions from Maxwell
 - $D_{n1}=D_{n2} + \sigma_s$ (surface charge from free carriers is usually 0)
 - $E_{t1} = E_{t2}$
 - Differing dielectric constants cause bending of E field at boundaries, increase peak electric field stress
 - Conservative electric field stress levels in dielectrics
 - Operate at less than 50% of uniform field breakdown strength
 - less than 25% for very long life (> 10⁹ pulses)
 - Breakdown of air in uniform field at ~ 3 MV / m so design for maximum field of < 1.5 MV / m
 - Calculate maximum stress level in final geometry
 - Start of failure is at location of maximum, then just gets worse
 - Use simple geometries, uniform materials
 - Dielectric boundaries should be similar to equipotential surface

🔁 Fermilab

Termination

- High current vs. Low Current
 - Bolting, soldering, welding most reliable
 - Difficult to do in most high voltage applications
 - Contact bands from Multi-Contact / Stäubli Electrical are designed for high current
 - High precision fitting parts for high pulse current
 - Use for inaccessible high voltage connections
 - Avoid EMI rated contact fingers and springs for high current
 - Contact pressure too low
 - Problems with uniform pressure along surface, poor current sharing
 - Short lifetime in high current pulsed applications
 - Contact material for many of these is BeCu alloy
 - May be safety issue in some locations

Example 1: Commercial Cable and Commercial Connector

- Requirement, g-2 "electrostatic" quads
 - Pulse to 32 kV with several μ s rise time, stable to < 0.5% for 700 μ s, repeat with an average repetition rate of 12 pps
- Tested several cable types for partial discharge
 - Both ends placed under oil to prevent cables ends from being dominant
- Tested mated connector with other end under oil
 - Connector will be in air for final configuration
 - Needed to add dielectric grease (silicone) inside cable termination and between mating connectors
- Full description in note E989-doc-4307, V. Tishchenko
 g-2 @ FNAL experiment note

Example 1: Commercial Cable and Commercial Connector

Connection to corona test equipment

Terminated cable test

13 C. C. Jensen | Cables & Terminations

Cable

under test

March 12, 2018

Example 1: Commercial Cable and Commercial Connector

- Requirement is ~ 2 years for any failures at 12 pps, 32 kV peak, 700 µs pulse length, 12 installations
- Test results with Dielectric Science DS2124, cable only
 - in air 4.3 kV_{rms} inception, in oil 12 kV_{rms} inception
 - This cable has grading material around center only, 100 kVDC
- Test results with Dielectric Science DS2124B, cable only
 - in air, 4.3 kV_{rms} inception, in oil >30 kV_{rms} inception
 - This cable has grading material around center and shield
- Test results DS2124B and GES S150/B150 (50 kVDC, 30 A)
 - one end DS2124B in oil, other in connector 7.8 kV_{rms} inception
 - one end DS2124B in oil, greased up connector, 16 kV_{rms} incept

Example 2: Semi Custom Cable and Connector

- Have been using special version of RG220 from Times Microwave for 20 years (AA-5966)
 - Cable has two layers of foil bonded to outside of polyethylene core covered with copper braid – no air space
 - All cable is acceptance tested by Fermilab with charge to 60 kV and discharge into matched load for 500,000 pulses
- Have been using connectors made by Isolation Products for 20 years (D-1023 and D-1024)
 - Early design had a failure point on outside for contact band
 - Fixed with a threaded connection, Multilam band inside connector
 - Use of dielectric grease and proper trimming of outer foil
 - Update for lower inductance design (D-1023F)

Example 2: Semi Custom Cable and Connector

March 12, 2018

References

- [1] R.L. Wigington, N.S. Nahman, Transient Analysis of Coaxial Cables Considering Skin Effect, Proceedings of the IRE, Feb 1957, pp 166-174
- [2] Q. Kern, F. Kirsten, C. Winningstad, Pulse Response of Coaxial Cables, Lawrence Radiation Lab, UC Berkeley, Counting Note CC 2-1b, July 1966
- [3] H. Riege, High Frequency and Pulse Response of Coaxial Transmission Cables with Conductor, Dielectric and Semiconductor Losses, CERN Note 70-4, PS Department, Feb 1970

