

IEP UB RAS

Russian Academy of Sciences
Institute of Electrophysics
Pulsed Power Laboratory

HIGH CURRENT AND CURRENT RISE RATE THYRISTOR BASED SWITCHES

A. Gusev, S. Lyubutin, A. Ponomarev, S. Rukin,
B. Slovikovsky, S. Tsyranov

PULse POwer for Kicker Systems (PULPOKS)
workshop 2018

Outline

IEP UB RAS

1. Introduction
2. SOS generators
3. Thyristor switches operated in impact-ionization wave mode
3.1 Effect of dU/dt and Temperature on Switching Process
3.2 Repetitive Mode of Operation
4. Conclusion and Future Works

About Pulsed Power Laboratory

Semiconductor Opening Switches (SOS) based on SOS effect discovered in Institute of Electrophysics, Ekaterinburg, Russia in 1992

Simplified electric circuit diagram of the generators based on Semiconductor Opening Switch (SOS).

Qualitative diagrams of the currents and voltages in the circuit.

Desktop SOS generators

IEP UB RAS

Parameter	SM-2N	SM-2NS	SM-3N	SM-3NS
Output peak voltage	$100-200 \mathrm{kV}$	$120-220 \mathrm{kV}$	$150-400 \mathrm{kV}$	$200-400 \mathrm{kV}$
Pulse current	$0.2-0.4 \mathrm{kA}$	$0.3-0.8 \mathrm{kA}$	$1-2 \mathrm{kA}$	$1-3 \mathrm{kA}$
Peak power	$30-50 \mathrm{MW}$	$60-100 \mathrm{MW}$	$300-500 \mathrm{MW}$	$400-600 \mathrm{MW}$
Pulse duration (FWHM)	$25-40 \mathrm{~ns}$	$3-6 \mathrm{~ns}$	$20-50 \mathrm{~ns}$	$5-8 \mathrm{~ns}$
Continuous PRF	1 kHz	0.4 kHz	0.3 kHz	0.3 kHz
Burst PRF	5 kHz	3 kHz	2 kHz	3 kHz
Case length	0.62 m	0.62 m	1.2 m	1.4 m
Mass with oil	$\sim 50 \mathrm{~kg}$	$\sim 60 \mathrm{~kg}$	$\sim 250 \mathrm{~kg}$	$\sim 300 \mathrm{~kg}$

SOS generators of GW-range

SOS generators of GW-range

SOS diode parameters

Cutoff current	$\sim 14 \mathrm{kA}$
Cutoff time	$\sim 2 \mathrm{~ns}$
Breaking power	$\sim 13 \mathrm{GW}$
${\text { (dI/ } \mathrm{dt})_{\text {max }}}$	$\sim 7 \mathrm{kA} / \mathrm{ns}$

Output parameters of the S-500 generator

Loads	$40-125 \Omega$
Peak voltage	$500-900 \mathrm{kV}$
FWHM	$\sim 7 \mathrm{~ns}$
Peak power	$\sim 6 \mathrm{GW}$
Burst PRF	up to 1 kHz

SOS-DIODE BASED PULSER FOR THE INJECTION SYSTEM OF THE COLLIDER VEPP-2000

B.I. Grishanov, F.V. Podgorny, A.S. Kasaev. BINP, Novosibirsk, RUSSIA

Abstract
We describe a high voltage pulser for supplying of kickers of the collider VEPP-2000 injection system. The
preliminary charged forming line to the load. Thyratrons or spark-gap switches are used in this scheme as the switch usually. There is a wide experience in development

Output pulse amplitude
$30-50 \mathrm{kV}$
Rise/fall time
Flat-top duration
$\leq 30 \mathrm{~ns}$
≥ 15 ns
$<10 \%$
$<0.5 \%$
$<1 \mathrm{~ns}$
50 Ohm
$\leq 2 \mathrm{~Hz}$

SOS generators for KICKER systems

IEP UB RAS

Fig. 4. Two-circuit scheme with pulse forming line.

B.I. Grishanov, F.V. Podgorny, A.S. Kasaev, SOS-DIODE BASED PULSER FOR THE INJECTION SYSTEM OF THE COLLIDER VEPP-2000, Proceedings of EPAC 2004, Lucerne, Switzerland

SOS generator challenge

Target: SOS pumping through a single magnetic element: increasing the efficiency from 0.4-0.6 to 0.80-0.85

Main problem: Superfast high power solidstate primary switch S1 must be developed

Example:
$\mathrm{W}=100 \mathrm{~J}, \mathrm{t}=400 \mathrm{~ns}, \mathrm{U} 1=20 \mathrm{kV}$
Peak current
40 kA
Current rise rate

Electric circuit diagram at pulse energy ~ 10-100 J.

Semiconductor switches

IEP UB RAS
Carrier injection and impact-ionization switching mode in semiconductor switches.

William Nunnally, A New Approach for Implementing HV (10 kV 's) Fast Closure (ns) Semiconductor Switches.
In Proc. of 2014 Power Modulator and High Voltage Conference (IPMHVC), 2014 IEEE International , USA, Santa Fe, NM, pp.17-22

Semiconductor switches

Carrier injection

Integral thyristors, model S33A
(Applied Pulsed Power, Inc)

$$
\begin{array}{cc}
\mathrm{U} & 48 \mathrm{kV} \\
\mathrm{I} & 9 \mathrm{kA} \\
\mathrm{dl} / \mathrm{dt} & 40 \mathrm{kA} / \mu \mathrm{s}
\end{array}
$$

Impact-ionization wave

Fast-Ionization Dynistors FID (loffe Institute, Saint Petersburg)

$$
\begin{array}{cc}
\mathrm{U} & 12-25 \mathrm{kV} \\
\mathrm{I} & 1-5 \mathrm{kA} \\
\mathrm{dI} / \mathrm{dt} & 100-200 \mathrm{kA} / \mu \mathrm{s}
\end{array}
$$

Thyristor triggered in impact-ionization wave mode

IEP UB RAS
Low-frequency commercial thyristor T343-500-20 (wafer diameter - 40 mm)

Operating voltage Surge current Current rise rate

$\mathrm{dU} / \mathrm{dt}$	$>1 \mathrm{kV} / \mathrm{ns}$
Rise time	$1-2 \mathrm{~ns}$
Max voltage	$5-6 \mathrm{kV}$
Switching time	$200-400 \mathrm{ps}$

Submicrosecond range

Thyristors T343-500-20 40 mm wafer (9 in series)
P, MW

Time ($\mu \mathrm{s}$)
Current rise rate is increased ~ 330 times in comparison with critical $\mathrm{dl} / \mathrm{dt}$ value at usual triggering mode when a current pulse is applied to the gate electrode ($0.4 \mathrm{kA} / \mu \mathrm{s}$)

Microseconatanatich

Thyristors T253-800-24 56 mm wafer (2 in series)

Voltage 5 kV Stored energy 12 kJ Resistive load $18 \mathrm{~m} \Omega$ Peak current 200 kA Peak power 720 MW Current rise rate $58 \mathrm{kA} / \mu \mathrm{s}$ FWHM $25 \mu \mathrm{~s}$
Efficiency
0.97

Advantage of the switches:
Easy of access (electronic shop)
Low price (50-100 \$ for 32-56 mm thyristor)
Disadvantage:
Fast triggering generator is needed (1-2 kA, 5-10 kV, 3-6 ns FWHM)

dU/dt Factor

IEP UB RAS
Circuit diagram of the experimental setup.

Thyristors T453-500-24
56 mm wafer (2 in series)

Waveforms of the voltage across thyristors during switching process: $d U / d t$ is ~ 0.5 (1), ~ 1.3 (2), and $\sim 3.0 \mathrm{kV} / \mathrm{ns}$ (3).

dU/dt Factor

IEP UB RAS

Visual appearance of T253-800 thyristor's silicon wafer of 56 mm in diameter after breakdown with triggering pulse. Peak current is 262 kA , stored energy is about 15 kJ .

Visual appearance of T253-800 thyristor's silicon wafer of 56 mm in diameter after self-breakdown without triggering pulse. Peak current is 150 kA , stored energy is about 7 kJ .

dU/dt Factor

IEP UB RAS
$T_{c r} \approx 500^{\circ} \mathrm{C}$
$K=\frac{S}{S_{a}}=\frac{T_{c r}-T_{0}}{\Delta T}$

$\mathbf{d U} / \mathbf{d t}, \mathbf{k V} / \mathbf{n s}$	$\mathbf{0 . 5}$	$\mathbf{1 . 3}$	3.0
$\boldsymbol{I}_{\mathbf{b r}}, \mathbf{k A}$	145	190	220
$\boldsymbol{W}_{\boldsymbol{T}}, \mathbf{J}$	112	165	212
$\boldsymbol{\Delta T},{ }^{\mathbf{0}} \mathbf{C}$	61	90	115
$\boldsymbol{K}=\boldsymbol{S} / \boldsymbol{S}_{\mathbf{a}}$	7.8	5.3	4.1
$\mathbf{1 / K} \mathbf{x ~ 1 0 0 \%}$	$\mathbf{1 2 . 8}$	$\mathbf{1 8 . 9}$	$\mathbf{2 4 . 4}$

Coefficient of the structure active surface area $\mathrm{K}=\mathrm{S} / \mathrm{Sa}$ (curve 7), amplitude of the failure current (curve 2) and thyristor dissipated energy (curve 3) as a function of the voltage rise rate at the triggering stage.

Effect of dU/dt and Temperature on Thyristor Switching Process

Effect of dU/dt and Temperature on Thyristor Switching Process

$\mathrm{T}=25^{\circ} \mathrm{C}=\mathrm{const}$ $\mathrm{dU} / \mathrm{dt}=0.6-4.0 \mathrm{kV} / \mathrm{ns}$

Waveforms of the voltage across the thyristor during switching process at room temperature ($\mathrm{T}=25^{\circ} \mathrm{C}$) and different values of the voltage rise rate $d U / d t$.

Effect of dU/dt and Temperature on Thyristor Switching Process

$\mathrm{dU} / \mathrm{dt}=4.0 \mathrm{kV} / \mathrm{ns}$

$\mathrm{dU} / \mathrm{dt}=0.8 \mathrm{kV} / \mathrm{ns}$

Waveforms of the voltage across the thyristor during switching process at different temperatures: $d U / d t=4 \mathrm{kV} / \mathrm{ns}$ (a) and $0.8 \mathrm{kV} / \mathrm{ns}$ (b).

Repetitive Mode of Operation

Thyristors T453-500-24 40 mm wafer (2 series connected).

$$
-U_{0}
$$

$$
\phi
$$

.

Waveforms of the voltage and current for the thyristor switch during its operation in repetitive mode.

Circuit diagram of the experimental setup for repetitive mode of operation.

Repetitive Mode of Operation

IEP UB RAS
Thyristors T453-500-24 40 mm wafer (2 series connected).

Primary switch parameters	
Charging voltage	$\mathrm{U}=4.0 \mathrm{kV}$
Maximum current	$\mathrm{I}_{\text {max }}=8 \mathrm{kA}$
Maximum current rise rate	$\mathrm{dl} / \mathrm{dt}=18$ $\mathrm{kA} / \mu \mathrm{s}$
Pulse duration (FWHM)	$\mathrm{t}_{\text {FWHM }}=1.4 \mu \mathrm{~s}$
Stored Energy	$\mathrm{W}_{0}=16 \mathrm{~J}$
Energy dissipated in the thyristors	$\mathrm{W} \approx 1 \mathrm{~J}$
Efficiency	94%

Circuit diagram of the experimental setup for repetitive mode of operation.

Repetitive Mode of Operation

Thyristor recovery time

Waveforms of the voltage across the thyristor switch during the thyristor recovery time analysis.

Repetitive Mode of Operation

IEP UB RAS

Thyristor recovery time at the different initial voltage.

Waveforms of the voltage across the thyristor switch at the different initial voltage.

Repetitive Mode of Operation

Burst mode 1000 Hz a few seconds.

Over 10^{6} pulses were performed.

No thyristor degradation was observed.

Waveform of the voltage across the thyristor switch at PRF of 1000 Hz .

Conclusion and Future Works

IEP UB RAS
The following results were achieved: submicrosecond range switch $20 \mathrm{kV}, 45 \mathrm{kA}, 134 \mathrm{kA} / \mu \mathrm{s}$; microsecond range switch - $5 \mathrm{kV}, 200 \mathrm{kA}$, $58 \mathrm{kA} / \mu \mathrm{s}$.

Two main factors effect on the switching process. This is the voltage rise rate $\mathrm{dU} / \mathrm{dt}$ at the triggering stage and temperature of the semiconductor wafer.

Thyristor-based switches were successfully tested in repetitive mode. These switches are used in real pulsed power applications.

Temperature and dU/dt effects need to be investigated more detailed including numerical simulations, which will give better understanding of the switching mechanism at impact-ionization wave mode.

The study was supported by Russian Foundation for Basic Research (RFBR), research projects number 15-08-07821 and 17-08-00406

IEP UB RAS

Russian Academy of Sciences
Institute of Electrophysics
Pulsed Power Laboratory

Thank you for your attention!

HIGH CURRENT AND CURRENT RISE RATE THYRISTOR BASED SWITCHES

Anton Gusev, S. Lyubutin, A. Ponomarev, S. Rukin,
B. Slovikovsky, S. Tsyranov

PULse POwer for Kicker Systems (PULPOKS)
workshop 2018

