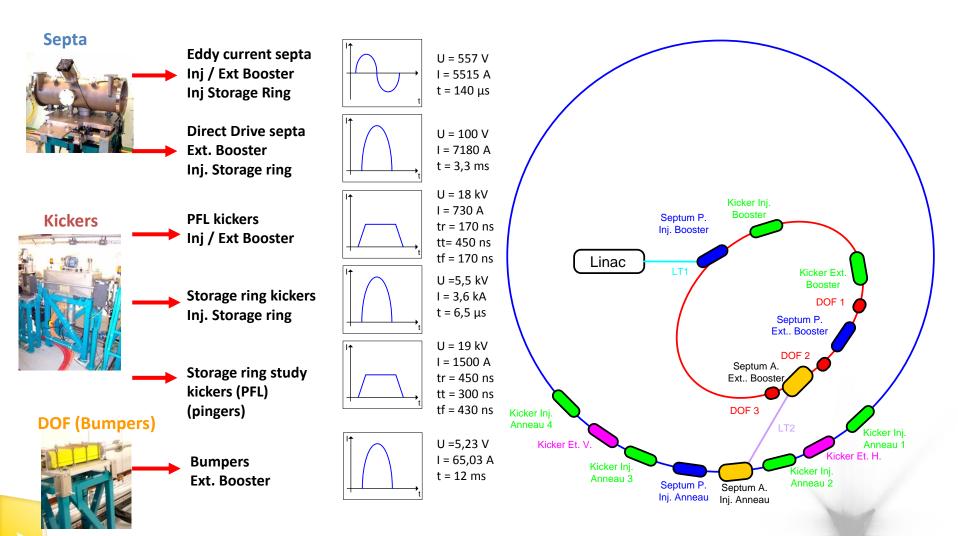


Experience of solid-state modulators for HV kickers and septa at SOLEIL.

Patrick ALEXANDRE - Synchrotron SOLEIL - France PULPOKS – CERN - March 12th to 14th, 2018.

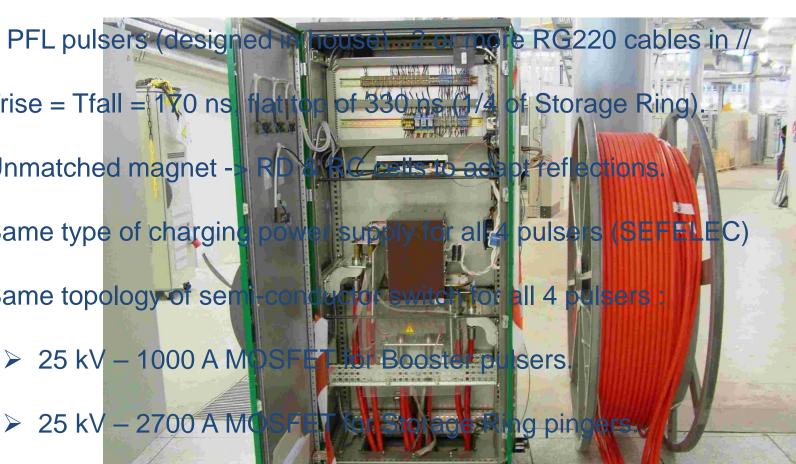
- 3rd generation synchrotron light source with currently 29 beam lines.
- Synchrotron radiation spectrum from <u>far infrared to hard X-rays</u> from either bending magnets or insertion devices.
- Operating at 2.75 GeV with various storage ring fillings :
 - 500 mA multi-bunch (416 bunches).
 - 450 mA hybrid (445mA $\frac{3}{4}$ ring + 5 mA single bunch).
 - 100 mA 8 bunches.
 - 18 mA single bunch.
 - Low-alpha & slicing modes.
- All modes available in **Top-Up** (stored beam regulated at 0,1%).


- Top-Up injection in the storage ring is performed with traditional 4 kicker bump & septa magnets.
- Maximum perturbation on stored beam smaller than 10% of beam size.

30 µm rms (Hor.) & 2 µm rms (Ver.)*

- Repetition rate of all pulsed systems: **3 Hz.**
- Good mechanical tolerances & alignment of magnets & vacuum chamber coating.
- Good precision of pulser (current pulse peak value & shape) & good HV power supplies.
- Good precision of timing.
- Reliable:
 - ~ 5500/6000 yearly hours of operation of SOLEIL.
 - Maximum 1 % of failure time for the <u>whole</u> machine.
 - During the accelerator design, there were several iterations to get required the beam deflections while using <u>semi-conductor switches</u>, <u>reasonable voltages & pulsers outside of tunnels.</u>

Pulsed Magnets



Focus on pulser & semi-conductor performances

- 4 PFL pulsers (designed in louse) 2 or no
- Trise = Tfall = 170 ns
- Unmatched magnet -
- Same type of chargin
- Same topology of sen

 - 25 kV 2700 A MC
 - Air dissipation and the manad

Soprano by COMECA HV switches

- Based on series parallel of individual MOSFET transistors (IRF840).
- Five 5kV boards in series (25kV total).
- All stages are triggered via magnetic switching. ON & OFF capability.
- Tolerant to failure of an individual MOSFET.
- Injection Booster : 6.8 kV / 272 A.
- Extraction Booster : 18 kV / 719 A.
- <u>Current pulse reproducibility (worse</u> <u>case measurement*)</u>: 3.5.10⁻³
- Jitter for a 5 card stack : 1,6 ns.

- Capacitive resonant discharge into magnet inductance.
 - 240 μF charged at 550 V to deliver full sine 140 μs 5,5 kA pulse.
- All 3 pulsers are identical (*charging voltage is adjusted according to deflection required*). Micronics charging power supply (2x300V-2A).
- Switches are EUPEC T1052 S thyristors :
 - V_{RRM} = 1 kV
 - I_{surge} = 22.5 kA
 - I²t = 2530 kA²s
 - dI/dt_{max} = 400 A/µs
 - Antiparallel diode : SEMIKRON

- Mounted on press-pack configuration with ventilation.
- Current pulse reproducibility (worse case measurement*): 1.6.10-3

- Capacitive resonant discharge into magnet inductance.
 - 106 mF charged at 101 V to deliver half-sine 3.3 ms & 7.2 kA pulse.
- Both pulsers are identical (*charging voltage is adjusted according to deflection required*). Micronics charging power supply (150V-200A).
- Switches are EUPEC T828N thyristors :
 - V_{RRM} = 400 V
 - I_{surge} = 13.5 kA
 - I²t = 910 kA²s
 - dl/dt_{max} = 300 A/µs

- Mounted on water cold plates (heat dissipation and thermalization).
- Current pulse reproducibility (worse case measurement*): 3.7.10-3
- Charge and discharge cycles of capacitor is decoupled by a simple MOSFET (thyristor holding current).

- Capacitive resonant discharge into magnet inductance.
 - 1,6 μF charged at 5500 V to deliver half-sine 6,5 μs & 3,8 kA pulse.
 - RC & RD cells to tune shape of pulse.
- Switches are Behlke IGBT HTS 121-240-SI
 - V = 12 kV
 - I_{peak} = 2400 A / module
- Completed with series diodes Behlke FDA 16kV 1500A.
- <u>3 modules mounted in parallel</u> (to get required current) with same length of connection stripline.
- Individual charging voltage (SEFELEC HVPS in continuous charge) & triggering signal for each pulser.
- Current pulse reproducibility (worse case measurement*):
 - > 3.6*10⁻³/3.7*10⁻³/4.0*10⁻³/4.6*10⁻³
 - > Jitter for all 4 pulser is in the nanosecond (not measured on current pulse).

Storage ring kicker pulsers.

- Major breakdown or beam loss due to pulsed magnets since 2006:
 none that we can remember or trace...
- Why ?
 - Design and operationnal margins !
 - Working voltages & current, capacitor & PFL voltage withstand, semi-conductor switch voltage and current capability, magnet voltage withstand, etc...
 - Fault detection : Behlke switches & continuous charging voltage monitoring.
 - ➤ Actual Top-Up rate : 1 shot every 2 3 minutes.
 - Maintenance and performance check (5 shutdowns a year).
 - How to determine when a pulsed system is going to fail ?

- Eddy current septum : no effect on stored beam after improved shielding on stored beam pipe.
- Thick septum : 10 µm (Hor.) & 8 µm (Ver.) peak* after extra shielding & installing electrically insulated vacuum chamber for injected beam.
- 4 kickers : 70 µm (Hor.) & 40 µm (Ver.) *rm*s* after :
 - Installation of additionnal energy storage capacitors, saturating inductances, tuning RC & RD cells, working on timing/jitter reduction and charging voltage to adjust shape of all 4 pulses. Realignment...
 - A lot of night machine shifts to adjust storage ring injection!
- Still not on target (30 µm rms (Hor.) & 2 µm rms (Ver.)), but beamlines don't complain (only 2 use gating).
- Working on a feedforward pair of vertical kickers to cancel vertical perturbation & improving shielding on thick septum.

- Excellent reliability and very good beam performance of semi-conductor based pulsers at SOLEIL.
 - Physics design allowed the use of semi-conductors switches, reasonable voltages and have the pulsers outside the tunnel.
 - Operationnal margin, tuning and maintenance help a lot !
- Future work to reduce perturbation in Top-Up operation.
- New developments in semi-conductors : SiC & GaN -> where can they bring us in terms of « massive » pulsers. <u>What</u> <u>needs for the 4th generation (DLSR) ?</u>
- When possible, use semi-conductor ! SOLEIL 352 MHz RF system is based on semi-conductor individual amplifiers and never failed as well.

Thank you for your attention !

- Measurements of reproducibility :
 - <u>Complete system</u>: HV power supply, capacitors/PFL, switches, coaxial transmission, magnet, vacuum chamber titanium coating,RD-RC cells, current transformers & oscilloscope.
 - Done <u>during shutdown</u>: cooling air and water not stable.
 - Done over 15000 shots without warm-up time.
 - All shots taken into account (no gaussian profile considered).
 - Actual Top-Up measurements : <u>better</u> (in the few 10⁻⁴ range on the current).
 - 4 kickers magnetic identity : 1.7 10⁻³ of the magnetic field (measured with beam & whole shape).
 - Perturbation measured : bumps measured at BPM with β_x = 14 m and β_z = 12 m

Back up 2 : nominal design

Devices	Beam Energy	Nominal Deviation	Bnom	Magnetic Length	Time parameters	turn	Magnet Inductan ce	l peak (A)	V supply (V)	Energy storage Capacitance
Devices	Ellergy	Deviation	Bhom	Length	parameters	S	Le	(4)	(•)	capacitance
					flat top300ns;tfall					2 coax 50 W
Fast kicker for Booster injection	110 MeV	20 mrad	12,22 mT	0,60 m	200ns	1	1,8 µH	389 A	12 kV	11
					flat top300ns;trise					2 coax 50 W
Fast kicker for Booster extraction	2,75 GeV	1,5 mrad	23 mT	0,60 m	200ns	1	1,8 µH	730 A	22,5 kV	//
					16-11 A					2*
4 Kickers for Storage Ring injection	2,75 GeV	7,6 mrad	116 mT	0,60 m	tfall < 3,54µs;T/2~6,5µs	1	2,0 μH	5220 A	9 2 kV	_
4 Mekers for Storage King injection	2,75 60 0	7,0 maa	110 1111	0,00 111	3,34µ3,172 0,3µ3	-	2,0 μΠ	5220 A	<i>5,2</i> KV	5,1µ13c11c3
					flat top280ns;total					4 coax 50 W
Horizontal Kicker for Storage Ring study	2,75 GeV	2 mrad	30,56 mT	0,60 m	1180ns	1	2,0 μH	1374 A	19 kV	//
					flat top280ns;total					6 coax 50W
Vertical Kicker for Storage Ring study (short)	2,75 GeV	0,6 mrad	18,33 mT	0,30 m	1180ns	1	0,670 µH	1488 A	15 kV	//
This Contum (second) for Departure initiation	110 14-14	121 mana d	0 4 C 4 T	0.2	T/2 (0)		0.050	1022.4	142	226.45
Thin Septum (passive) for Booster injection	110 MeV	131 mrad	0,161 T	0,3 m	T/2 60μs		0,950 μH		142	326 µF
Thin Septum (passive) for Booster extraction	2,75 GeV	9,3 mrad	0,284 T	0,3 m	T/2 80μs		0,950 μH		~280	326 μF
Thin Septum (passive) for SR injection nom	2,75 GeV	23,7 mrad	0,362 T	0,6 m	T/2 60μs	1	1,4 µH	4325 A	318	240 µF
Thin Septum (passive) for SR injection 20mm	2,75 GeV	25,7 mrad	0,393 T	0,6 m	T/2 60µs	1	1,4 µH	4700 A	438	240 μF
Thin Septum (passive) for SR injection max	2,75 GeV	27,5 max	0,420 T	0,6 m	T/2 60μs	1	1,4 µH	5015 A	467	240 μF
							7,750			
Thick Septum (active) for Booster extraction	2,75 GeV	110 mrad	1,01 T	2 x 0,5 m	T/2 3,3ms min	2	•	7080 A	120	106 mF
Thick Contum (active) for Storage Ding injection	2,75 GeV	110 mrad	1,01 T	2 v 0 5 m	T/2 3,3ms min	2	7,750 μH*	7080 A	120	106 mF
Thick Septum (active) for Storage Ring injection	2,75 Gev	IIUmad	1,011	2 x 0,5 m	1/2 3,3113 11111	2	μη	7000 A	120	100 IIIF
DOF1 Bumper for Booster extraction	2,75 GeV	2,5 mrad	0,046 T	0,5 m	T/2 12 ms	12	225 μH	145 A	14 V	
DOF2 Bumper for Booster extraction	2,75 GeV	0,3 mrad	0,00552 T	0,5 m	T/2 12 ms	13	225 μH			
DOF3 Bumper for Booster extraction	2,75 GeV	1,8 mrad	0,03312 T	0,5 m	T/2 12 ms	14	225 μH			
	_,		.,	e , e	.,= ==			,.,		