

NON LINEAR KICKER R&D AT SOLEIL *A.K.A.* MIK : MULTIPOLE INJECTION KICKER

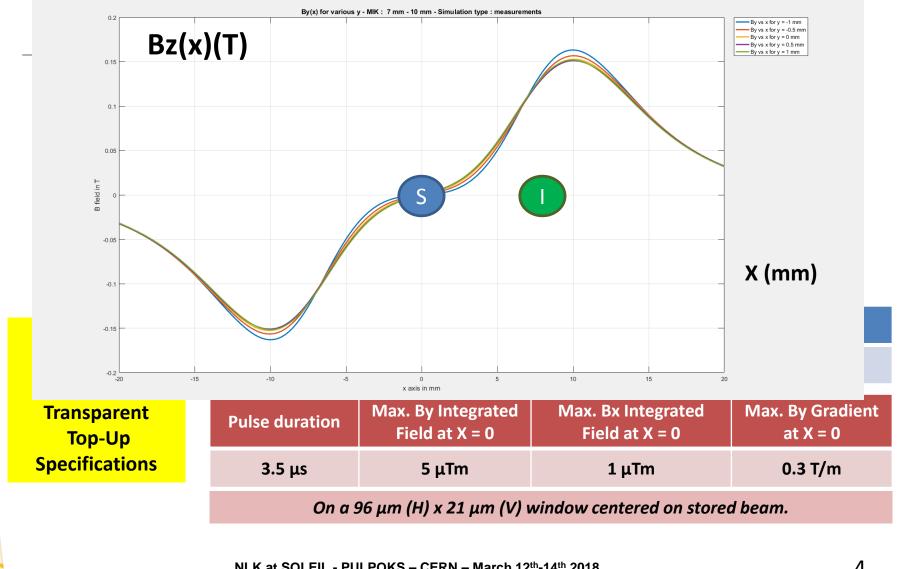
Patrick ALEXANDRE – SOLEIL

patrick.alexandre@synchrotron-soleil.fr

On behalf of the SOLEIL and MAX-IV teams on the development, construction and commissioning of the MIKs.

V1 – March 12th

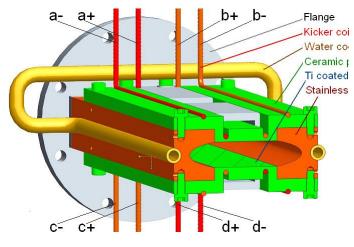
- MAX-IV & SOLEIL collaboration.
- Top-Up injection with a Non Linear Kicker.
- Magnetic design of the MIK.
- Design and construction of the MIK system.
- Pulsed magnetic measurements.
- Conclusions.



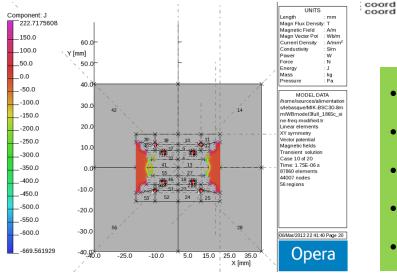
- Collaboration between MAX-IV in Sweden and SOLEIL in France (2012 2016/2017).
- Funded by the Swedish Ministry of Research.
- Aimed at researching and developing technology for accelerators:
 - > Control systems.
 - > Nanobeamlines.
 - Insertion Devices.
 - Sample Environment.
 - Accelerator Devices.
 - Time Resolved Methods.
- MIK project : 1 complete pulsed NLK for MAX-IV 3 GeV storage ring and 1 complete pulsed NLK for the SOLEIL 2.75 GeV storage ring.
 - This presentation (all figures) is about the MAX-IV 3 GeV MIK.

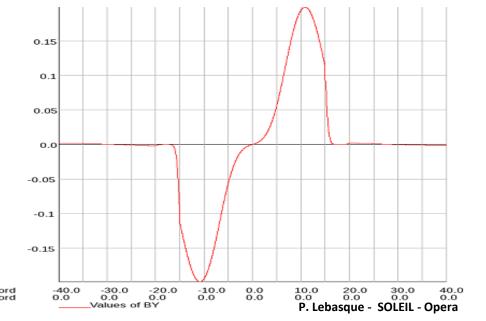


Injection with NLK



MIK for MAX-IV 3 GeV : how it looks like !...





Magnetic design of the MIK : starting from BESSY II NLK

O. Dressler – P. Kuske – BESSY II

- Avoid large metallic parts near magnetic fields.
- **Coils connected in series.** •
- Position of 8 coils is critical. ٠
- SR absorption / cooling. •
- Titanium coating screening effect. •

P. Lebasque - SOLEIL - Opera

٠

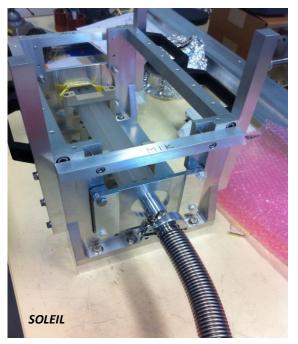
DESIGNING IT

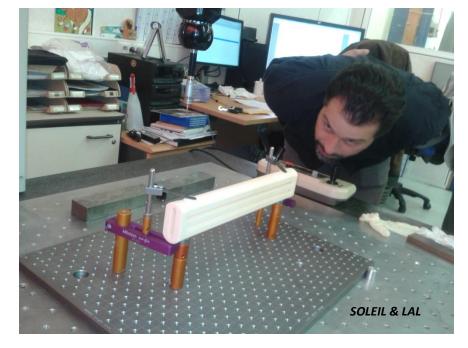
- Accelerator physics : injected beam position, integrated field, defect field at center, GFR, chamber apertures...
- **Magnet design :** simulation (DC & Transient : Opera & Matlab), effect of Ti coating on fields, inductance...
- Thermal study : image current & current in coils, mechanical stress in magnet/vacuum chamber...
- Vacuum chamber design : aperture (H&V), Synchrotron Radiation (SR) ray tracing, static and dynamic pressure simulations, outgassing of materials...
- **Pulser design :** high voltage (HV) pulsed electronics, choice of components, stability & reproducibility of the current pulse, HVPS, coaxial cable, EMC ...
- **Mechanical design :** magnet, pulser & HV insulator design, issues with alignment and metrology, vibration study, handling and installation ...
- **Materials choice :** issues with radiation, high voltage, ultra-high vacuum, availability, mechanical strength & expansion, etc...
- Alignment and metrology : measure the magnet to accurately place on the accelerator.
- **Control system design :** triggering, fault monitoring, interlock & safety...
- Installation and commissioning : when and how install it, baking, testing...
- **Operation :** ease of use / maintain, reliability..
- **Budget :** money doesn't grow on trees.

BUILDING IT

- **Subcontract parts manufacturing :** which parts? control quality?
- In-house manufacture : who can do what ? availability, work planning...
- **Prototyping** : how much ? how far do you go ? how many tests ? what parts need prototyping ?
- Manufacture management : series/parallel work, test subsystems...
- **Final testing :** magnetic measurements, electrical tests, long duration tests, debugging...
- **Communicate** : reports on technical design & simulations, procedures for installation-troubleshooting-operation, feedback for/from other groups, forms, various paperwork...

ITERATIVE WORK !


- Find a solution that meets some physics specifications -> check all the other aspects...
- Check tolerance to manufacturing errors for components, ruggedness of design...
- New matters will rise ! You don't always foresee all the problems...
- Until your solution works and meets all the implicit and explicit specifications...
- It takes a lot of people !



- 7 mm 10 mm MIK structure.
- 8 copper rods accurately positioned. Rods are 2 mm in diameter.
- Aperture is 8 mm (V) x 46 mm (H).
- Length : 400 mm (flange to flange).
- Chamber is made of **alumina ceramic**.
- No large metallic parts near magnetic fields (except flanges with low permeability stainless steel).
- Current pulse : 7.8 kA @ 14 kV on magnet & τ_{pulse} = 3.5 μs
 - Detailed design of HV insulators & connexions in very confined spaces (range of mm).
- All 8 rods are connected in series : **inductance of 1 μH**
- Titanium coating : **1 μm.**
- Total heat load : **100 W** (full stored current & 10 Hz pulsed current repetition rate).
- Magnet is **embedded** in the vacuum chamber.
- Magnet construction split between in house made parts / assembly and subcontracted manufacture.
- Magnets are **identical** for both SOLEIL and MAX-IV storage rings.

KYOCERA delivers bare chambers with steel adaptation end-parts

Preliminary vacuum tests : verify absence of large leaks. Proper tools & procedures to be developed (Vacuum group - SOLEIL – Gif-sur-Yvette) Metrology of chambers : using tri-dimensional measurements verify quality of machining (grooves, aperture, etc..) with 3 different references. (B. Leluan – LAL – Orsay)

Process of assembling the MIK magnet

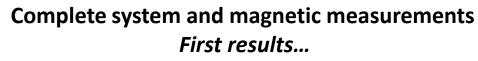
Once chambers are accepted...

CF100 flange welding : UHV weld. Proper tools and procedures are developed & training parts made. (P. Prout - SOLEIL – Gif-sur-Yvette)

Titanium coating done at ESRF. Specific tools and procedure developed for small aperture & non conductive chambers.

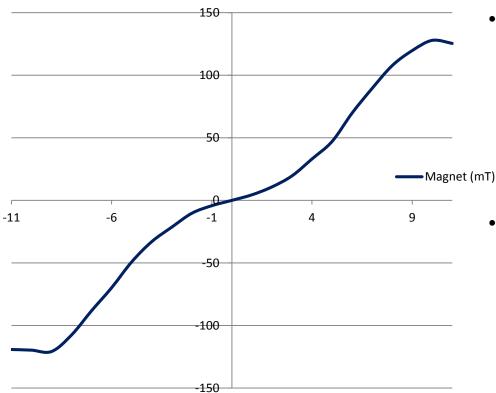
(M. Dubrulle – H. Marques - ESRF – Grenoble)

- Bending and preparing 8 copper rods.
- Gluing them !! Not so evident !!
- A lot of tools developed for all these steps.
- Procedures tried and tested on an aluminum chamber first, then revised, then put into action on the first real chamber.
- About 3 month procedure to go through until you get one magnet ready for electric and magnetic measurements & testing.


About the pulser ...

Classic capacitive resonant discharge into the magnet inductance

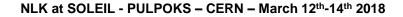
- 1.3 μF 20 kV Leclanché capacitor bank.
- 4 HV IGBT Behlke modules (2400 A – 18 kV) in // and 20 kV series fast diodes.
- Resistor and diode cell.
- Resistor and capacitor cell.
- FuG 18kV 280 mA charging power supply. (10 Hz repetition rate).
- Resistor and capacitor // on magnet inductance.
- 10 coaxial RG-214 cables.
- Pulser is electrically designed in-house.
- Pulser is mechanically designed in-house : highvoltage vs inductance vs maintainability constraints.



- No major issues with electrical insulation !
- Magnetic fields in MIK strongly depend en s, x and y.
- Magnetic measurements have to be accurate : in terms of magnetic component measured (B_s, B_x & B_y) and the location of the measurement.
- Pulsed magnetic measurement bench redesigned and built :
 - Precise positioning in 3 dimensions of the measurement probes (local & integral) done with stepper motors & precise mechanics.
 - Straightness of the integral probe so measurement is done for a known and constant x & y position along s.
 - Precise (and long) alignment of the bench on the magnet and testing displacements of probes (lookup table).
- After successful high voltage testing of the first magnet (made with rejected KYOCERA chamber), the magnet was magnetically measured in July 2017.

Complete system and magnetic measurements *First results...*

By (x = -11 to + 11 mm & y = 0)



- Shape is as <u>expected</u> :
 - ➢ Peaks values at x ≈ 10 mm ≈ b

with value close to simulation.

- > By at injection \approx 40 mT.
- Because rods not accurately positioned

 (rejected chamber due to out of tolerance machining), the zero field region is absent, as simulations predicted it.

Conclusion

- Extremely challenging from the accelerator physics specifications point of view.
- Led to detailed engineering on multiple scales :
 - Macroscopic : dimensioning of the magnet, high peak current/short pulse/high voltage & insulation in very confined spaces.
 - Microscopic : effect of small machining error in positioning of rods on the magnetic fields quality.
- **Sapphire** used for a large vacuum chamber with very small tolerances on machining.
- Outstanding effort on **tool design & procedure** to go from bare chamber to complete magnet with minimum risk of failure with highly-skilled technicians.
- Accurate pulsed magnetic measurement bench gave good measurement on test chamber.
- First magnetic tests extremely encouraging and we are looking forward to measure the « good » chambers once assembled !

SOLEIL (Gif-sur-Yvette)

Pulsed magnets : P. Alexandre, R. Ben El Fekih, A.Letrésor, A. Hardy (*ret*), D. Muller, M. Bol.

Mechanical Engineering : J.L. Marlats (*ret*), J. Dasilvacastro, S. Thoraud, *S. Genix*, F. Lepage, P. Prout, C. DeOlivera, C. Basset (*ret*), N. Jobert.

Vacuum : C. Herbeaux, N. Béchu, S. Morand, N. Baron, V. Joyet.

Electronics & Computer Control : G. Renaud, P. Monteiro, X. Elattoui, *T. Jablonka*.

Metrology and alignment : A. Lestrade, C. Bourgoin.

Accelerator physics : R. Nagaoka, A. Loulergue.

Purchase & Juridical : T. Bucaille, F. Minaeian, E. Monin.

Collaborations : N. Guimard.

Et al...

General project leadership

P. Lebasque (SOLEIL)

P. Fernandes Tavares (MAX-IV)

MAX-IV (Lund)

E. Al d'Mour, J. Ahlbäck,S. Leeman, M. Johansson,L. Dallin, B. Jenssen, K. Ahnberg ,M. Grabski, M. Gunnarsson ,V. Hardion, J. Thanel, J. Jamroz.

BESSY II (Berlin)

O. Dressler, P. Kuske.

LAL (Orsay)

B. Leluan.

ESRF (Grenoble)

M. Dubrulle.

H. Marques.

Thank you for your attention ! Comments & questions more than welcome !

NLK at SOLEIL - PULPOKS - CERN - March 12th-14th 2018