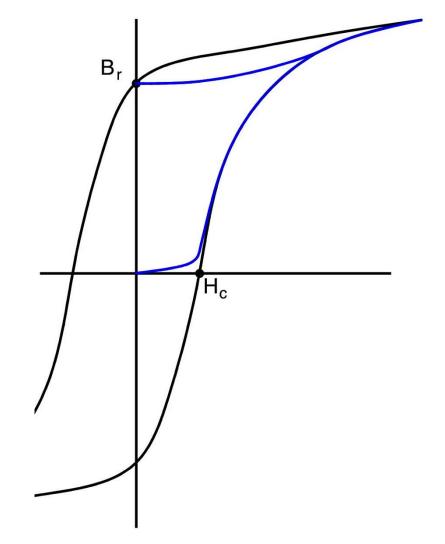


Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

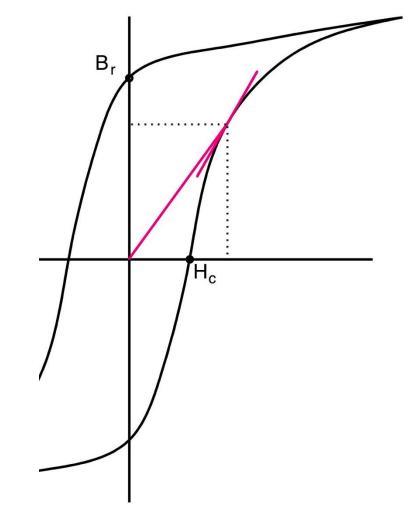
Magnetic Materials for Pulsed Power

Chris C. Jensen March 12 2018

Outline


- Magnetic Properties Overview
 - permeability, saturation, losses
 - B-H loop and initial conditions
- Ferrite Specific
 - Ferrite production
 - Pulse measurement
- Examples
 - Considerations in choosing material
 - Kicker magnet
 - Kicker saturating ferrite
 - Recent procurement experience

- Types of materials (typical, various parameters for all types)
 - Nickel Zinc Ferrite
 - + $B_{sat} \sim 0.3$ T, $f_{corner} \sim 1$ MHz, $\mu_{r,initial} \sim 1$ k, $\rho \sim 10^5 10^8$ Ohm cm
 - Manganese Zinc Ferrite
 - + B_{sat} ~ 0.4 T, $f_{corner}~$ ~ 100 kHz, $~\mu_{r,initial}$ ~5 k, losses ~ 0.5 W / cm^3, $~\rho$ ~ 10^1 10^3 Ohm cm
 - Finemet tape wound steel (specialty alloy, special processing)
 - + $B_{sat} \sim 1.2$ T, $f_{corner} \sim 10$ kHz, $\mu_{r,initial} \sim 30$ k, losses ~ 0.3 W / cm³
 - Tape wound 3% silicon steel (not special alloy, 250 µm thick)
 - + B_{sat} ~ 1.9 T, f_{corner} ~ 1 kHz, $\mu_{r,initial}$ ~2 k, losses ~ 8 W / cm³
- B_{sat} and $\mu_{r,initial}$ at 1 kHz, losses at 100 kHz, B ~ 0.2 T, f_{corner} where real part of small signal μ_r starts to reduce, not maximum use



- Constituent Equations
 - $B = \mu_0 H + M(H)$
 - $B = \mu H = \mu_r \mu_0 H$
 - No hysteresis
 - No time dependence
- Br dependent on drive level
- Hc dependent on drive frequency
- No negative drive applied, then remain at Br until next cycle, minor loop excursion
- Area between curves has units of T / m² * A / m = Joules/m³, loss per cycle

- How to define permeability?
 - Pulse / Amplitude permeability
 - Chord from 0,0
 - Incremental permeability
 - Slope at point
 - Pulse power generally can't consider simple, constant permeability if no or very small air gap
- The amplitude of the excitation, the frequency and the applied waveform all effect the shape of the measured loop

- Equations relating circuits (loops) to geometry and fields
 - Maxwell's laws
 - Integral [$E \cdot d/$] = -d / dt Integral [$B \cdot dS$]
 - Assuming uniform E, B and non changing path / surface

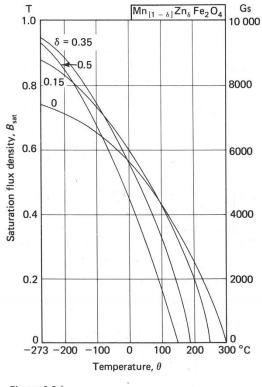
- V = -dB/dt A_{surface} N_{turns}

- Integral [$B \cdot d/$] = μ_0 Integral [$J \cdot dS$] + 1/c² d / dt [$E \cdot dS$]
 - Assuming path not in magnetic material, uniform B, J, non changing path / surface and dE/dt small
 - H I_{path} = J A_{surface} N_{turns} = N_{turns} I
 - The last assumption of small dE/dt may be poor in fast pulsed systems
 - Displacement currents may be appreciable
- Circuit and field simulation makes many assumptions
 - Understand what you are modeling and try to make predictions that you can check

Magnetic Materials / Other Properties

- Dielectric Strength
 - NiZn ferrite materials have higher dielectric strength than MnZn
 - Tape wound material, need to know insulation strength for induced voltage per lamination
 - Finemet, need to make sure have appropriate insulation
 - Specialty steel may need impregnation
- Relative Dielectric Constant / Resistivity
 - NiZn typical range $\epsilon_r \sim 10\text{--}100$, $\rho \sim 10^8 \text{--}10^5$ Ohm cm
 - MnZn typical range ϵ_r ~ 10²-10⁴, ρ ~ 10³ 10¹ Ohm cm
 - Tape wound steels are conductive along the tape
- Magnetostriction (and inverse)
 - Relationship between magnetic parameters and displacement
 - A problem with some steel alloys and sometime MnZn

🛟 Fermilab


Ferrite Production

- Control of raw materials important
 - Ferrite is iron oxide with various amount of other oxides
 - Mn, Ni and Zn are most common
 - These replace some of Fe in the lattice
 - Mix variations and impurities change ferrite properties
- Raw materials are formed into small granules
 - 2 processes, wet vs dry, different approach, similar end result
- Form into rough shape and compress
 - Small toroids (~ 30 mm) generally formed by die stamping
 - Press blocks using high pressure (100s atmospheres)
 - Or very high pressure, isostatic (1000 atmospheres)

Ferrite Production

Effect of composition and temperature on saturation flux density [1]

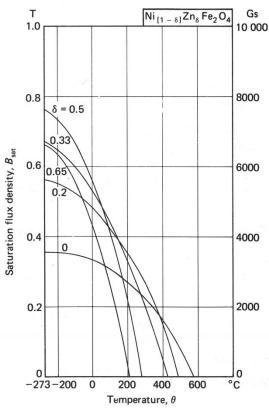
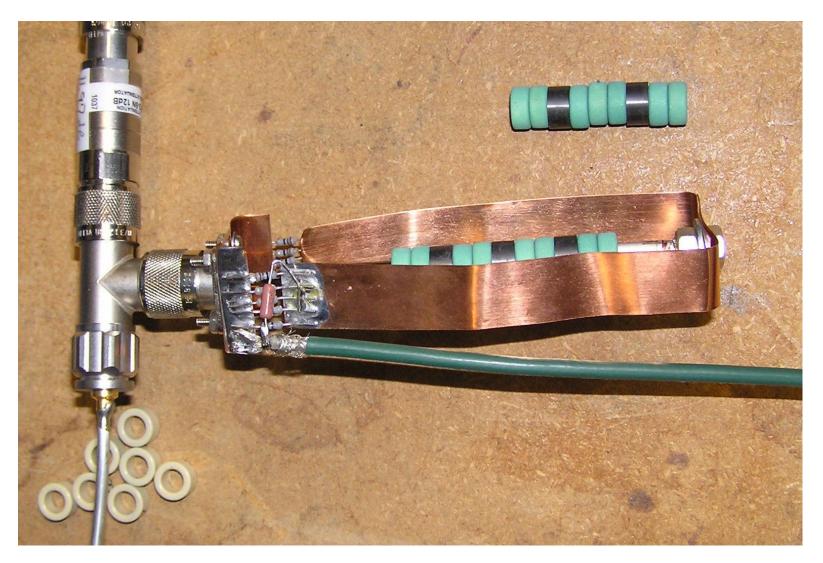


Figure 3.3.2

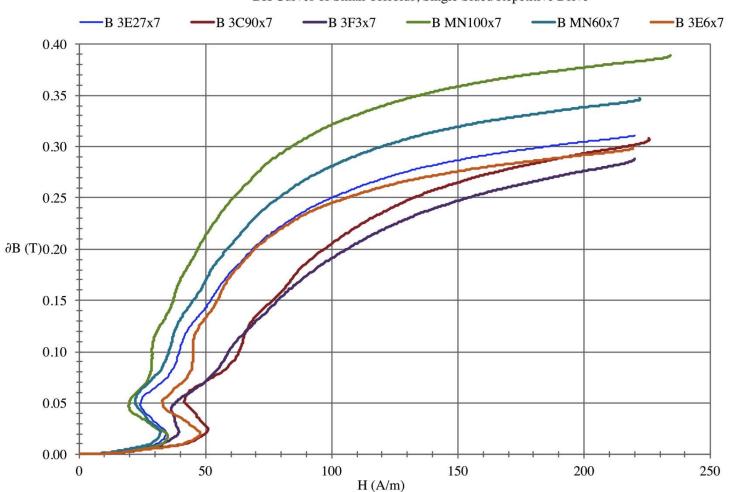
Ferrite Production

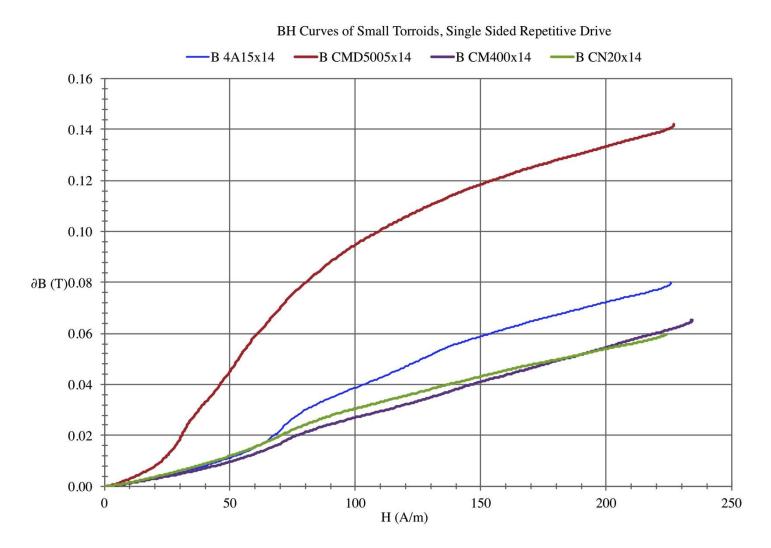
- Sintering
 - Controlled heating with controlled atmosphere to temperature on order of 1000 C
 - Shrinkage on order of 10-20%, controlled within +/- few %
- Final Finishing
 - Grinding surfaces flat
 - Some specialty ferrites have shapes which require special tooling and machining
 - If special vacuum requirements are needed, this is the step where problems can occur; grinding solution must be water based
- Gluing / Cementing
 - Epoxy resins for joining ferrites, usually large air gap someplace
 - Fermilab specifies use temp of > 150 C for radiation resistance

March 12, 2018


🛟 Fermilab

- The test waveform shape and rise time should be similar to application
 - 1 kHz sine wave measurements will give a B H loop which may not be useful for 1 µs pulse without reset field
- The shape of the core should have similar size and shape to final
 - Fabrication methods for small toroid samples are not the same as large blocks, use large toroid
 - Toroids can be easier to analyze; make sure you understand where the highest fields are in an E-I or pot core
- Sample test setup for high speed saturation application
 - Actual size cores, small toroids
 - Applied voltage was ~100 V, ~20 ns rise time with 50 Ohm source, but real voltage is ~30 kV, ~20 ns rise time
 - Not the same waveform amplitude, hard to scale





BH Curves of Small Torroids, Single Sided Repetitive Drive

14 C. Jensen | Magnetic Materials

March 12, 2018

‡Fermilab

15 C. Jensen | Magnetic Materials

March 12, 2018

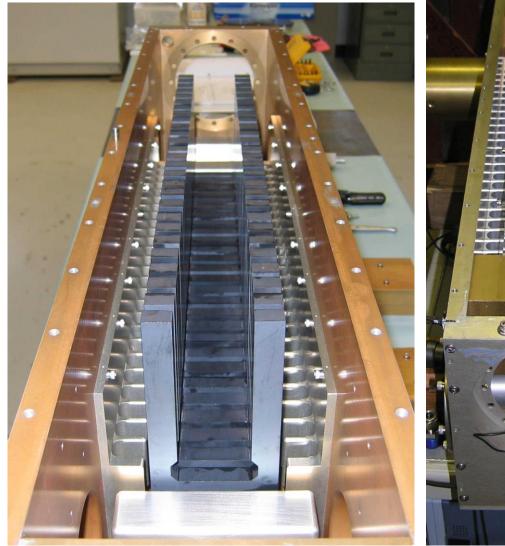
‡ Fermilab

Examples

- Consideration in choosing material
 - Is the space limited? Is the material available in size required?
 - Will there be a way to reset field after pulse? Does cost and size mean field reset is a requirement? Can an air gap be used as part of reset mechanism?
 - Does the field need to be uniform in an application that interacts with beam? Will saturation effect field uniformity? How much?
 - Is a custom shape needed? Can it be fabricated using any material?
 - Is this a fast repetition rate? What are losses in material?
 - Is the voltage applied enough to dielectrically breakdown ferrite? Should laminations be used? Should ferrite be insulated?
 - How much do material properties vary by lot? Is that a problem? Are there multiple manufacturers of similar material?
 - Other mechanical properties (vacuum, heat conduction, radiation tolerance, toughness)

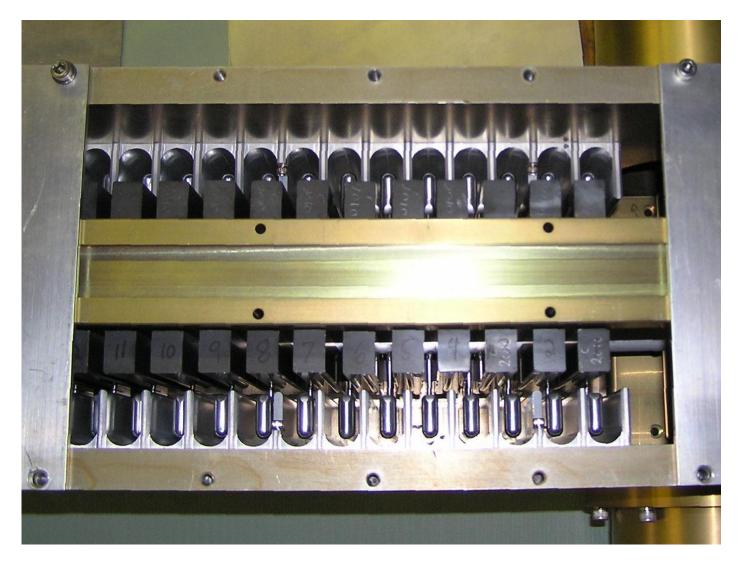
Example 1 – Injection Kicker Magnet

- Considerations in choosing material
 - Gap for beam in ferrite, will naturally reset to small residual field
 - Fast rise time implies lower permeability ferrite required


(NiZn, $\mu_i \sim 400$, $B_{sat} \sim 0.46$ T, $B_r \sim 0.25$ T, $\rho \ 10^8$ Ohm cm)

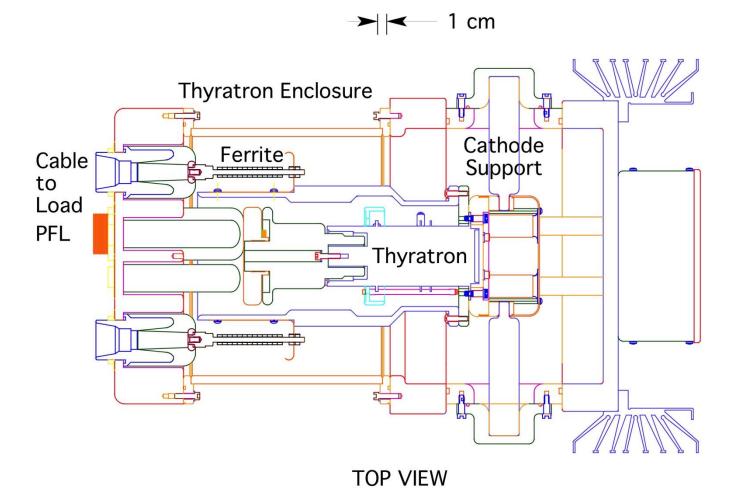
 $f_{max} = \gamma M_{sat} / (3 \pi (\mu_i-1))$ is location of maximum loss [2]

- Fast rise time also means limit cross section size to prevent resonance / standing wave
- Field uniformity requirement is +/- 1%, so can accept some saturation in corners, limited B in ferrite to about 0.2 T
- Repetition rate is low, duty factor low, some loss in ferrite can actually damp cell to cell resonances
- High applied voltage, but ferrite does not support voltage
- Ferrite is not in vacuum for Fermilab designs
- See [3]



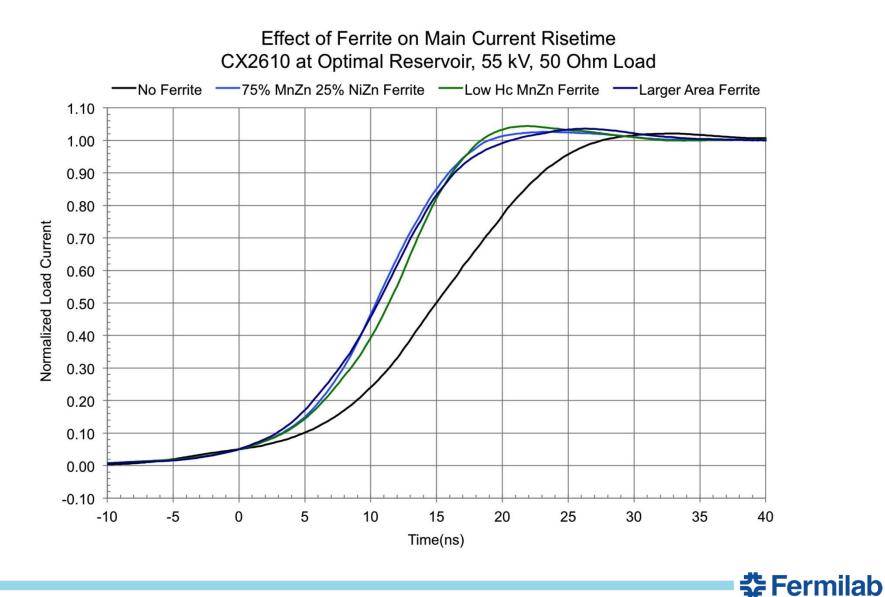
18 C. Jensen | Magnetic Materials

Example 1 – Injection Kicker Magnet



Example 2 – Saturating impedance for pulser

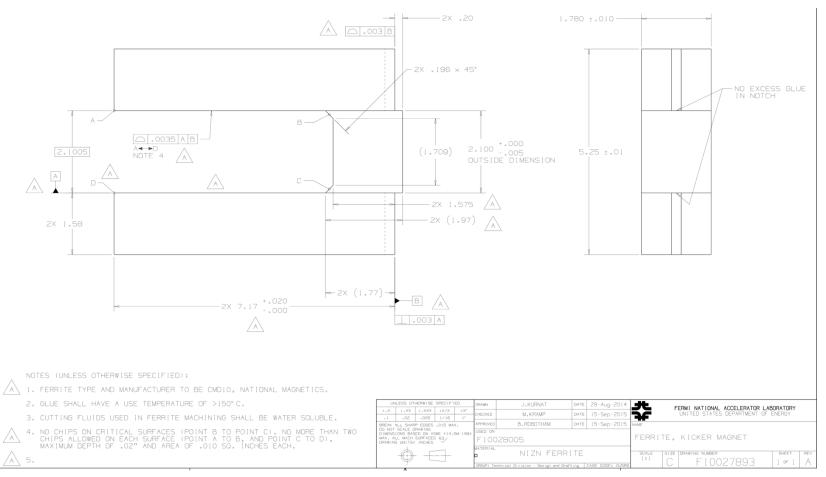
- Consideration in choosing material
 - No gap in core, but need 30 kV isolation and high impedance at very high speed, wont reset core
 - Since no reset, need low Br material
 - Unsaturated core needs to be high impedance, low Hc
 - Want core to saturate all at same time, small OD to ID ratio
 - Repetition rate is low, duty factor low, some loss in ferrite ok
 - High applied voltage, but along core surface not through ferrite
- See [4]


Example 2 – Saturating impedance for pulser

21 C. Jensen | Magnetic Materials

Example 2 – Saturating impedance for pulser

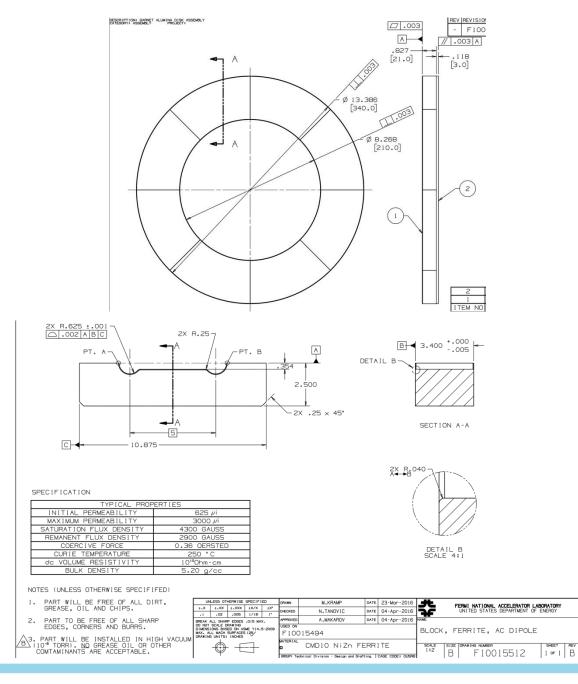
22 C. Jensen | Magnetic Materials


Recent Procurement Experience

- Consolidation of 2 American Companies into 1
 - Ceramic Magnetics bought by National Magnetics Group Inc. (Pennsylvania)
 - These are only companies that make large, machined shape ferrites; other companies for small toroid's
 - Lead times have been very long recently for CMD5005 and CMD10 (both NiZn kicker ferrites)

🔁 Fermilab

- European Companies
 - Ferroxcube (Poland and China), Others?
- Asian Companies
 - TDK, ?
 - China ?



Sample 1 for kicker magnet, multiple glued pieces, CMD10 20 pieces ordered, Delivery ~ 15 months

March 12, 2018

🛟 Fermilab

Sample 2 for RF tuner, 8 pieces glued onto alumina substrate, AL-8 garnet 5 assemblies ordered Delivery ~ 9 months

Sample 3 for 3 MHz AC magnet, single piece machined profile, CMD10 20 pieces ordered Delivery ~ 12 months

²⁵ C. Jensen | Magnetic Materials

References

- [1] E.C. Snelling, Soft Ferrites, Properties and Applications, 2nd Edition, 1988 Butterworth & Co
- [2] J. L. Snoek, Dispersion and absorption in magnetic ferrites at frequencies above 1 Mc/s, Physica Amsterdam, Vol. 14, 1948
- [3] C.C. Jensen, R. Reilly, I. Terechkine, Gap Clearing Kicker Magnet for Main Injector, PAC 2009, Vancouver, BC, Canada, pp 1729-1731
- [4] C.C. Jensen, Kicker Pulsers for Recycler Nova Upgrades, IPAC 2015, Richmond VA, WEPTY027
- [5] Richard M. Bozorth, Ferromagnetism, 1993 Wiley Press

