Carbon Ion Therapy at Lanzhou

Hongwei Zhao

Institute of Modern Physics (IMP)
Chinese Academy of Sciences

Talk presented to Workshop on "Ideas and technologies for a next generation facility for medical research and therapy with ions", June 19-21, 2018, Archamps.

Outline of this talk

History Review and key technology development

Carbon ion therapy demon-facility developed by IMP

Challenge and future plan

IMP and research fields

IMP is the biggest nuclear physics research center in China for heavy ion basic-science and nuclear technology application

- Nuclear physics
- Atomic physics
- Nuclear chemistry
- Radiation chemistry
- Material science
- Hadron physics
- High Energy Density physics
- Accelerator physics

High Priorities at IMP

- Precision mass measurement of exotic and stable nuclides
- CIADS, HIAF, ADANES, ADRUF
- Tumor therapy & mutation breeding
- Material sciences

- 850 staff+325 students
- 600-700 M CNY/per year

- Radiation biology
- Radiation medical science
- Radiation material
- Advanced nuclear energy
- Nuclear-detector technology
- Ion Accelerator
- Large scale experiment facilities
- Special experiment facilities

IMP Existing Facility: HIRFL

Heavy Ion Research Facility in Lanzhou (HIRFL)

History of heavy ion cancer therapy

HISTORY

First Patient

The first patient was treated with carbon ion in Phase I trials at Lawrence Berkeley National Laboratory (LBNL).

Active Scanning

GSI developed an active ion beam delivery system called raster scanning. A target volume can be painted in three dimensions with a tightly focused pencil beam.

Fast Development

At present, more than 8 facilities in operation for carbon-ion radiotherapy in the world.

1946

1977 1994 1997 2006 Up to now

First Proposal

Robert Wilson proposed the use of Bragg Peak for radiation therapy.

- Dose localization
- Low entrance dose
- No or low exit dose

First Dedicated Facility

NIRS in Japan built the first heavy ion accelerator for medical use in the world (HIMAC).

Ion Therapy in CHINA

From November 2006 to July 2013, 213 patients were treated with carbon ions at Heavy Ion Research Facility in Lanzhou (HIRFL), China.

- Inverted depth-dose distribution
- High relative biological effect (RBE)

• ...

Heavy Ion Therapy Development at IMP

Development treatment Clinical trial of technology

superficial tumor: 103

2006-2009

Clinical trial of deap-seated

Development of tumor: 110

2009-2013

Industrialization

Construction of demo facilities.

2012-2016

Nozzle Layout of beam delivery

2D conformal, 2D layer-stacking conformal and 3D spot-scanning irradiations

Spot Scanning Beam Delivery

compliance of measured and planned doses within an error of 5%

<u>Carbon Ion Treatment Plan</u> (ciPlan) developed by IMP

- Image preprocessing
- Organ delineation
- > 3D reconstruction
- ➤ Field set-up

- Dose calculation
- > Plan evaluation
- > QA data preparation
- Virtual simulation

- > Plan comparison
- > Auxiliary positioning
- **>** ...

Clinical trial treatment of 213 patients at HIRFL

Treatment time	Treatment depth	Number of cases
November 06-16, 2006	1.6 cm	4
January 07-15, 2007	2.1 cm	9
March 13-20, 2007	2.1 cm	14
August 11-16, 2007	2.1 cm	9
December 15-21, 2007	2.1 cm	15
March 20-25, 2008	2.1 cm	15
September 11-17, 2008	2.1 cm	16
March 02 - 07, 2009	2.1cm	21
Total (2006-2009)		103

Tumor type	Number
Liver cancer	16
Lung cancer	22
Adenocarcinoma (adenosquamous carcinoma, pancreatic cancer)	3
Brain tumor (brain glioma, malignant meningioma, etc.)	18
Head and neck tumors (eyes, nose, throat, salivary gland, thyroid, etc.)	16
Bone and soft tissue sarcoma	13
Pelvic malignant tumors (rectal cancer, prostate cancer, chordoma, ovarian cancer, etc.)	9
Others	6

110

Total (2009-2013)

Examples of follow-up treatment effects

Postoperative recurrence of basal cell carcinoma

Before

3 years later

7 years later

Left outer canthus basal cell carcinoma

4 months later

5 years later

中国科学院近代物理研究所 Institute of Modern Physics , Chinese Academy of Sciences

Examples of follow-up treatment effects

metastatic carcinoma of lung

disappears

primary carcinoma of liver

reduces 30%

cell carcinoma of salivary gland

disappears

reduces 10%

prostatic carcinoma

reduces 30%

Progress of Carbon Ion Therapy Demon- Facility Developed by IMP

Wuwei Demo-Facility for Carbon Ion Therapy

Combination of cyclotron injector + striping injection+ synchrotron

- ¹²C⁶⁺ beam
- E: 100-430 MeV/A
- I: $0.5-1.0 \times 10^9 \text{ ppp}$
- Beam commissioning completed.
- Specifications reached
- Safety validation and detection completed.
- Clinical treatment with patients will start soon.

近代物理研究所 Institute of Modern Physics -14-

Milestones of Wuwei Facility

- First beam : Dec. 2015
- Registration detections of national and international standards GB9706, GB4793, GB4943, YY0505, IEC60602-2-64 and so on have been finished (2016-2018).
- Clinical trial treatment of 47 patients will be started by the end of June, 2018 to validate treatment effect and performance of the facility.
- It is expected to be in commercila operation in 2018.

Central Control Room in Wuwei

The injection beam intensity can reach 4×10^9 ppp, and the injection gain factor is 400

Beam current from DCCT in synchrotron during injection, acceleration and slow extraction

Slow extraction efficiency higher than 80% and the beam structure was improved through feedback system

Beam Flatteness of 2# treatment terminal

120MeV/u 103.2%

400MeV/u 105%

Typical requirement 100-106%

3D Spot Scanning Dose Distribution

Before optimization

After optimization

Depth distribution

Transverse distribution

SOBP

Lanzhou Heavy-Ion Tumor Therapy Center

- **♦** Relying on Gansu Provincial Tumor Hospital.
- **♦** Installation completed.
- **♦** The facility will be commissioned by September of 2018.

Challenge and future plan

- Patient treatment numbers for each dedicated therapy facility: 1500-2000 patients/year, challenging!
- Superconducting magnet technology may increase the magnetic field, minimize size of the magnets and rotating gantry and decrease the cost.
- Linac injector can be used to enhance the beam intensity with new injection mode.
 - **Next generation ion therapy machine**
 - Laser ion source +RFQ and DTL in one cavity+SC technology
 - More compact and new beam-delivery system

Linac +Synchrotron for carbon beam

250 (C⁴⁺)

 $\leq \pm 2 \times 10^{-3}$

 $\leq 10 (5\sigma)$

Current (euA)

Momentum spread($\delta P/P$)

Emittance(π mm.mrad)

Synchrotron

Cooperation mode of ion therapy Project

Summary

- Heavy-ion beam has some favorable characteristics for therapy.
- IMP has demonstrated carbon ion therapy technology with 213patients clinical trial treatment by the beam from HIRFL.
- IMP built two dedicated compact demon-facilities for carbon ion therapy in Wuwei and Lanzhou.
- IMP is developing new technologies for the next generation ion therapy machine to reduce the facility size and cost.
- You are welcome to join us for collaboration.

Thank you for your attention!