

Compact carbon-ion gantry development in Japan

2018/6/20

<u>Yoshiyuki Iwata</u>

Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS)

Outline

- Introduction
- Gantry development
 - Design
 - Construction
 - Beam commissioning
- Future plans
- Summary

Introduction

World-first heavy-ion medical accelerators

ON SOURCES

BIOLOGY EXP.

4

ROOM

• HIMAC (Heavy Ion Medical Accelerator in Chiba)

- 1987: Construction began
- 1994: Clinical trials began

>11,000 patients were treated ALVAREZ

HIMAC can accelerate heavy ions having q/m=1/2 up to E/A=800 MeV

New treatment facility

- 3 treatment rooms
- **New development**
 - Fast 3D raster scanning
 - <u>SC rotating-gantry</u>

LOWER SYNCHROTRON

Construction completed in 2010

TREATMENT ROOM E

TREATMENT ROOM F

ROTATING-GANTRY

Treatment floor (B2F)

Gantry development

Weight: order of 300 tons

Use of superconducting (SC) magnets

Ion kind: 12CIrradiation method: 3D ScanningBeam energy: 430 MeV/nMaximum range: 30 cm in waterBeam orbit radius: 5.45 mLength: 13 m

The size and weight are considerably reduced

Layout of the SC gantry

Z (cm)

4

2

C

-2

-4

-10

X (cm)

2

-2

-4

Corrections with the outermost layer

Coil positions of the outermost layer were modified to cancel out the measured multi-pole components

Corrected uniformity

Design of SC magnets

All the SC magnets were designed by using a 3D magnetic field solver

Specifications of SC magnets

Parameters	Symbol	Unit	BM01 BM	A02 BM03	BM04 BM05	BM06	BM07	BM08	BM09	BM10
Туре	_	_	Superconducting sector magnet							
Coil	_		Dipole+Quard.				Dipole Dipole+Quarc		+Quard.	
Bending angle	θ	deg	18 26 18				22.5			
Bending radius	ρ	m	2.3				2.8			
Max. field	B _{dipole}	Т	2.88			2.37				
Max. field gradient	G _{max}	T/m	9.1			_		1.3		
Bore size	D _{bore}	mm	φ60			□122	□170		206	
Effective radius or effective area	D _f or A _f	mm	φ 40				□120	□160		200
Uniformity (dipole)	ΔBL/BL	_	±1×10 ⁻⁴							
Uniformity (quad.)	∆GL/GL	_	±1×10 ⁻³							
Inductance (dipole)	L	Н	6.2	9.	1	6.2	5.2	8.9	1	2
Stored Energy (dipole)	P	kJ	57	8	4	57	133	225	3	19

Construction of SC magnets

Construction at NIRS

Beam commissioning began since Oct. 2015/

Angular dependence

The SC quadrupole of BM05 was finely tuned, so as to obtain circular beam spots at the isocenter.

Energy dependence

Beam tuning was made for 201 kinds of beam energies for E=430~55.6 MeV/u.

Parameter sets were interpolated to provide beams by angular step of $\Delta \theta$ =1 degree.

Centering beam spots

Future plans

2nd-generation SC gantry

- A compact facility for CIRT is being constructed at Yamagata University.
- 2nd-generation compact gantry will be installed.

Widespread use of SC gantry

2nd-generation

SC gantry for CIRT

The 2nd-generation compact SC gantries will be constructed and installed at Yonsei University Health System in Korea.

© Toshiba Energy Systems & Solutions Corporation 2018

3rd-generation SC gantry

- Combined function SC magnets (B_{max}~5 Tesla)
- A size and weight will be <u>smaller than those of</u> proton gantries

Summary

- CIRT using HIMAC has been performed since 1994, and more than 11,000 patients were treated at NIRS.
- <u>The SC gantry</u> as well as the fast 3D raster-scanning irradiation, were developed.
- After series of the commissioning works, <u>cancer</u> <u>treatment using the SC gantry began since May 2017.</u>
- The <u>next-generation compact gantries</u> are being developed for the future compact facilities.

- T. Shirai, T. Fujita, T. Furukawa, Y. Hara, S. Matsuba,
 K. Mizushima, T. Murakami, K. Noda, N. Saotome,
 Y. Saraya, S. Sato, T. Shirai, R. Tansho (NIRS, QST)
- T. Fujimoto, H. Arai, et al. (AEC)
- T. Ogitsu (KEK)
- T. Obana (NIFS)
- N. Amemiya (Kyoto Univ.)
- T. Orikasa, S. Takayama, et al. (Toshiba Corp.)