COLORED SCALAR MEDIATOR MODELS

K. Hamano (University of Victoria)

Disclaimer

- This talk is not a conclusion for the white paper.
- I was not involved in any Atlas and CMS wide discussions of colored scalar mediator (t-channel) models.
 - <u>https://lpcc.web.cern.ch/sites/lpcc.web.cern.ch/files/wg_docs/</u> 20160919-20_publicmeeting.pdf
 - <u>https://lpcc.web.cern.ch/sites/lpcc.web.cern.ch/files/wg_docs/</u> 20160622_publicmeeting.pdf
 - <u>https://lpcc.web.cern.ch/sites/lpcc.web.cern.ch/files/wg_docs/</u> 20151210-11_publicmeeting.pdf
- I know, for the 2HDM+pseudoscalar model, Atlas and CMS people met many times and detailed discussions were done about the contents of the white paper.
- But, as far as I know this was not the case for colored scalar mediator models.

Colored scalar mediator models

• Papucci model (1402.2285[hep-ph]):

$$\mathcal{L} = \mathcal{L}_{SM} + g_M \sum_{i=1,2} \left(\tilde{Q}_L^i \bar{Q}_L^i + \tilde{u}_R^i \bar{u}_R^i + \tilde{d}_R^i \bar{d}_R^i \right) \chi + \text{mass terms} + c.c.$$

- 8 Mediators: \tilde{Q}_{L}^{i} , $\tilde{u}_{R'}^{i}$, $\tilde{d}_{R'}^{i}$ (i = flavor, only first two generations)
 - MLV(Minimal Flavor Violation) → universal coupling, same mass.
- 3 free parameters (mediator widths are given by minimal requirement):
 - 1 coupling, 1 mediator mass, 1 DM mass.
- Bell model (1209.0231[hep-ph]):

$$\mathcal{L}_{\text{int}} = f_{ud} \bar{Q}_{\text{L}} \eta \chi_{\text{R}} + h.c$$

= $f_{ud} \left(\eta_u \overline{u}_{\text{L}} + \eta_d \overline{d}_{\text{L}} \right) \chi_{\text{R}} + h.c.,$

- 6 Mediators (do not couple to right hand quarks, couple to all 3 generations).
- 3 free parameters (mediator widths are given by minimal requirement):
 - 1 coupling, 1 mediator mass, 1 DM mass.

(e)

(d)

- Mono-Z diagrams.
 - Only (a) ISR and (e) mediator emission are possible for mono-Z.

ATLAS mono-jet group

(Mono-jet) Model Implementation

The mono-jet group uses the Bell Model with a set of simplifying assumptions:

Following the example of Ref. [PVZ14], the interaction Lagrangian is written as

(No 3rd generation)

$$\mathcal{L}_{\text{int}} = g \sum_{i=1,2} (\phi_{(i),L} \bar{Q}_{(i),L} + \phi_{(i),u,R} \bar{u}_{(i),R} + \phi_{(i),d,R} \bar{d}_{(i),R}) \chi \qquad (:$$

where $Q_{(i),L}$, $u_{(i),R}$ and $d_{(i),R}$ are the SM quarks of the *i*-th generation and $\phi_{(i),L}$, $\phi_{(i),\mu,R}$ and $\phi_{(i),d,R}$ are the corresponding metric of the transformation of the

30/05/16 ● ● ● ♥ ♥ ロ ∉ Φ ♂ ENG &177PM ♥

Minimal decay widths:

$$\Gamma(\phi_{(i)} \to \bar{u}_{(i)}\chi) = \frac{g_{(i)}^2}{16\pi M_{\phi_{(i)}}^3} (M_{\phi_{(i)}}^2 - m_{u_{(i)}}^2 - m_{\chi}^2) \sqrt{(M_{\phi_{(i)}}^2 - (m_{u_{(i)}} + m_{\chi})^2)(M_{\phi_{(i)}}^2 - (m_{u_{(i)}} - m_{\chi})^2)}$$

 $_R)\chi$

et al. (1209.0231)

ired, charged

(Mono-jet) Split Sample Generation Procedure ATLAS mono-jet group

Considerations:

1. DM-mediator-quark vertices allow for simultaneous FS partons with different hard scales

Events with $p_{T}(FS parton) < matching scale vetoed$

- → Problematic when $M \approx m_{\chi}$ and φ produced on-shell
- 2. Without including any additional jets, ISR is suppressed for the inclusive process $pp > \chi\chi + \{0, 1, 2\}j$
 - → Hard ISR important when $\Delta m = M m_{\chi}$ is small

(Mono-jet) Split Sample Generation Procedure ATLAS mono-jet group

Treatment:

Split sample generation for each mass and coupling point according to the number of on-shell mediators in the MadGraph process:

- 1. $\phi\phi + \{0, 1, 2\}j$
- 2. $\varphi \chi + \{0, 1, 2\} j \$ med$
- 3. $\chi\chi + \{0, 1, 2\}j \$ med

Adapted from Papucci et al., ref. <u>arXiv:1402.2285</u>

 \rightarrow Decay of mediators performed by Pythia (assume 100% BR for $\phi \rightarrow q\chi$)

Note: Following Papucci et al, interference is neglected

Note: Excludes photons and EW/Higgs bosons in the hard scatter.

(Mono-jet) Split Sample Recombination Procedure ATLAS mono-jet group

Omitting on-shell mediators in samples 2 and 3 removes the phase space $M \pm \Gamma * BW cutoff$

- → Require Γ *BWcutoff \leq O(50 GeV)
 - **G** For narrow Γ , BWcutoff = 15
 - **\Box** For points with 50/ Γ < 1, BW cutoff capped at 1

For broad Γ , a narrow BW cutoff leads to event duplication among the samples - accounted for as follows:

1. Assume mediator is well-modelled by a Breit-Wigner propagator:

$$BW(x) = \frac{1}{\pi\Gamma/2\left(1 + \left(\frac{x - x_0}{\Gamma/2}\right)^2\right)}$$

2. Scale samples 1 and 2 by the factors w^2 and w respectively, where:

$$\mathbf{w} = \frac{\int_{I} BW(x)dx}{\int_{-\infty}^{\infty} BW(x)dx}$$

with $I \equiv [M - \Gamma * BWcutoff, M + \Gamma * BWcutoff]$

3. Weight samples by cross-sections and add together

(Mono-jet) Limits for g=1

2015+2016 data. 36.1 fb⁻¹

Mediator masses of ~1.65 TeV are excluded for light DM.

DM masses up to 600 GeV are excluded.

Setting g=1:

- → Distinguish the tchannel model from SUSY squark production
- → Interesting in terms of relic density.

Less Simplified model

• Simplified DM models with the full SM gauge symmetry (1605.07058[hep-ph]).

 $\mathcal{L}_{t-channel} = -\left[\overline{\chi}\widetilde{Q}_{L}^{i\dagger}\left(\lambda_{Q_{L}}\right)_{i}^{j}Q_{Lj} + \overline{\chi}\widetilde{u}_{R}^{i\dagger}\left(\lambda_{u_{R}}\right)_{i}^{j}u_{Rj} + \overline{\chi}\widetilde{d}_{R}^{i\dagger}\left(\lambda_{d_{R}}\right)_{i}^{j}d_{Rj} + H.c.\right]$

Left handed mediator masses relation:

$$m_{\tilde{d}_L}^2 - m_{\tilde{u}_L}^2 = \lambda_4 v^2$$

- Different couplings and masses for Q_L, u_R and d_R.
 - The mediators have SU(2) charges like quarks.
- Parameters:
 - 1 DM mass
 - 3 couplings: λ_{QL} , λ_{uR} , λ_{dR}
 - 12 mediator masses: 4 kind (m_{QLu} , m_{QLd} , m_{uR} , m_{dR}) * 3 generations
 - Mediator widths are given by minimal requirements.
- Sleptons are not included in this model.

Benchmark point (LS model)

- Only the first generation is relevant to collider search.
 - Set second and third generation mediator mass heavy.
- 8 free parameters:
 - 1 DM mass
 - 4 couplings: λ_{QL} , λ_{uR} , λ_{dR} , λ_4
 - 3 mediator masses in the 1st genaration: m_{QLu} , m_{uR} , m_{dR}
 - The m_{QLd} is given by m_{QLu} and λ_4
- Benchmark values
 - $\lambda_4 = 0 \rightarrow m_{QLd} = m_{QLu}$
 - $\lambda_{dR} = 0 \rightarrow m_{dR}$ is not relevant.
 - This leaves with 5 free parameters.

Dencimark punt (LO I

Mono-Z cross section

Benchmark point (LS model)

Benchmark point (LS model)

- Fix $\lambda_{dR} = \lambda_4 = 0$ and $m_{uR} = 10$ TeV.
- 4 free parameters:
 - 2 couplings: λ_{QL} and λ_{uR}
 - 2 masses: mediator mass $m_{QL} = m_{QLu} = m_{QLd}$ and DM mass
- For given couplings like $\lambda_{QL} = \lambda_{uR} = 1$, we can give 2d mass exclusion limit with DM mass vs mediator mass (m_{QL}).
 - (Mono-Z) Cross section

DM mass	m _{QL}	Xsection [fb]	Xsec*BF(Z->II) [fb]	Bell model [fb] (coupling = 3)
1 GeV	50 GeV	649.0	42.3	90.2
50 GeV	300 GeV	24.3	1.6	2.9

Mediator mass > 1 TeV by Atlas squark search (2j+MET)?

Bell model vs Less Simplified model

(Mono-Z) Lepton p_T

Normalized to integral=1

Bell model vs Less Simplified model

• (Mono-Z) Lepton pair

Bell model vs Less Simplified model

(Mono-Z) Dark matter pair

Conclusions

- Various t-channel models were explained.
- Bell model was used in Atlas with 2015+2016 data.
 - Mono-jet set limits on mass-mass plane.
 - Mono-Z did not have enough sensitivity.
 - \rightarrow Enough sensitivity with full Run2 (2015+2016+2017+2018) data.
- Less Simplified Model was introduced.
 - Comparison with Bell model in the context of mono-Z was done.
 - Do we want to use this model with entire Run data? Or do we stick to Bell model?

Back up: Comparison with SUSY Strong Production

Sub-sample 1 resembles closely direct squark production with RH squarks switched off

- → DM \Leftrightarrow neutralino -
- \rightarrow Mediator \Leftrightarrow squark
- → Squarks couple to 1 flavor of quark

Performed a comparison of cross-sections/ kinematics for different values of g

- → Sub-sample 1 recovers MSSM crosssections for g=0.1
- → MSSM kinematics recovered for a range of couplings
- → For larger g, the other sub-samples become more important

Setting g = 1:

- → Distinguishes the *t*-channel model from SUSY squark production
- → Interesting in terms of relic density

m _x = 450 GeV, M = 500 GeV								
	Process	0-j	1-j	2-j	sum{0-j,1-j,2-j}			
Sp1, g = 0.1	pp > sq sq	1.4e+00	4.9e-01	1.1e-01	2.0e+00			
SUSY sample	pp > sq sq	1.4e+00	4.9e-01	1.1e-01	2.0e+00			

