MD2930: Asynchronous Beam Dump Test with Bunched Beam

W. Bartmann, C. Bracco, C. Hessler, C. Wiesner

Motivation

- Idea: perform an asynchronous beam dump test with bunched beam in the abort gap
- Goal: Verify our understanding of the beam-loss behaviour, and the current beam and FLUKA models under clearly defined conditions.
- Asynch. dump test (2016-05-15): The detailed reconstruction of the event showed that the quench behaviour is not fully understood [1-3].

Magnet	Т (К)	ρ _{energy} (mJ/cm³)	Quench expected?	Quench observed?
MQY.4R6	4.5	30	Yes	No
MQY.5R6	4.5	50	Yes	No
MB.A8R6	1.9	27	Yes	Yes
MB.B8R6	1.9	5	No	(Yes)*
MQML.8R6	1.9	1.5	No	Yes
MB.A9R6	1.9	< 0.1	No	No
MB.B9R6	1.9	< 0.1	No	No
MQM.9R6	1.9	0.25	No	Yes

*quenched due to heat propagation

Preparation of the MD (~2h)

Goal: Allow injection into the abort gap

- Modify variable AGK (procedure by N. Magnin) [4]
- Disable abort-gap cleaning
- Mask abort-gap interlocks in SIS that check [5]:
 - LhcMkiAgkLength, AbtFib6Card, MKI kick length settings, LAST_LEGAL_INJECTION_BUCKET
- Disable steps in the **injection sequencer** that check [5]:
 - if first bucket is not after LAST_LEGAL_INJECTION_BUCKET
 - if last bucket is not after LAST_BUCKET
 - MKI kick length
- Mask steps in SPS_BQM that check if last injected bunch would be in the abort gap [5]
- Mask in Injection BIS:
 - MKI2/8 BETS/AGK/Erratic

[5] D. Jacquet, J. Wenninger, Injection sequencer and SIS protections against incorrect injection requests (into the AG), November 2017

1) Probe abort gap (~2h)

Goal: Validate first bucket to hit the TCDQ

- Pilot bunches
- Injection energy
- Collimators, TCDQ, TCSP at nominal injection position
- Mask Post Mortem? (in case of long waiting time)
- No bump at TCDQ
- Inject one pilot into relevant regions of the abort gap (e.g. around the TCDQ edge).
 Manually dump beam. Check BLM response.
 - a) Test for Beam 1
 - b) Test for Beam 2
- Unmask Post Mortem

2a) Trains at 450 GeV (~2.5h)

Goal: Verify expectations for loss distribution and energy deposition at injection energy

- BCMS (not 8b4e), injection optics
- Inject one train of 48 bunches into the beginning of the abort gap. Dump manually.
- For FLUKA validation, 2 intensity steps are desirable. The procedure of how to reduce the bunch intensity is under discussion between ABT, OP and MPE.
- 4 tests without bump at TCDQ:
- a) ~6e10 p+/bunch (B1/ B2 separately)
- b) ~1.25e11 p+/bunch (B1/ B2 separately)
- Remark: No quench expected. FLUKA results expected shortly before MD.

- 13 bunches hitting TCDQ
- 4 bunches hitting TCDS.
- Relatively uniform distribution due to overlapping bunches

2b) Trains at 450 GeV with bump (~1.5h)

Goal: Verify impact of orbit excursion on loss distribution (optional)

- Mask IR6 excursion interlocks in SIS and BIC for both beams (maskable with unsafe beam?)
- Put orbit bumps of 2 mm at TCDQ as for normal Asynch. Dump Tests [6]
- 2 tests with bump at TCDQ:
- a) ~1.25e11 p+/bunch (B1/ B2 separately)

- 13 bunches hitting TCDQ
- 4 bunches hitting TCDS.
- Relatively uniform distribution due to overlapping bunches

3) Single bunch at flat top (~2h)

Goal: Verify expectations for loss distribution and energy deposition at top energy

- FLUKA results expected only shortly before the MD. Therefore, approach: stay below intensity of 2016-05-15 test
- Inject one pilot bunch (~1e10 p+) in a bucket close to the TCDQ edge for each beam
- No orbit bump
- Ramp to 6.5 TeV
- Optics: Flat top with 1m beta*
- Manually dump beam
- If time allows: repeat with adjacent bucket

3) Single bunch at flat top (~2h)

Goal: Verify expectations for loss distribution and energy deposition at top energy

- FLUKA results expected only shortly before the MD. Therefore, approach: stay below intensity of 2016-05-15 test
- Inject one pilot bunch (~1e10 p+) in a bucket close to the TCDQ edge for each beam
- No orbit bump
- Ramp to 6.5 TeV
- Optics: Flat top with 1m beta*
- Manually dump beam
- If time allows: repeat with adjacent bucket

3) Single bunch at flat top (~2h)

Goal: Verify expectations for loss distribution and energy deposition at top energy

- FLUKA results expected only shortly before the MD. Therefore, approach: stay below intensity of 2016-05-15 test
- Inject one pilot bunch (~1e10 p+) in a bucket close to the TCDQ edge for each beam
- No orbit bump
- Ramp to 6.5 TeV
- Optics: Flat top with 1m beta*
- Manually dump beam
- If time allows: repeat with adjacent bucket

Simulated particle distribution for single bunches at 6.5 TeV

Recovery?

- If last MD: reset settings of variable AGK
- If not last MD before YETS: full revalidation with beam (see procedure)
- Risk of magnet quenches in IR6. In this case, additional recovery time of an estimated 4-8 hours might be required.

MD Parameters: Summary

Specie	Protons
Category	Normal MD
Time required [h]	10 hours
Beams required [1, 2, 1&2]	Both
Beam energy [GeV]	Part 1 and Part 2: 450 GeV / Part 3: 6.5 TeV
Optics (injection, squeezed, special)	Part 1 and Part 2: injection optics. Part 3: Flat top with 1m beta*
Bunch intensity [#p, #ions] and Number	Part 1: Pilots
of bunches	Part 2: Trains of 48 bunches (BCMS) with ~6e10 p+ and trains
	of 48 bunches (BCMS) with ~1.25e11 p+
	Part 3: One pilot bunch
Transverse emittance [m rad]	Nominal values (exact value not critical).
Bunch length [ns @ 4s]	Nominal values.
Optics change [yes/no]	No
Orbit change [yes/no]	No
Collimation change [yes/no]	No
RF system change [yes/no]	No
Feedback changes [yes/no]	No
What else will be changed?	In order to inject into the abort gap, the variable AGK has to be
	modified before the measurement.
Are parallel studies possible?	No
Other info/requests	Risk of magnet quenches in IR6.

References

- [1] C. Wiesner, Overview of asynch. dump tests 2016/17 and asynch. dump test with quench (2016-05-15), LIBD Meeting, 05.10.2017, <u>https://indico.cern.ch/event/661534/</u>
- [2] D. Wollmann, Magnet quench characteristics and quench levels, LIBD Meeting, 05.10.2017, <u>https://indico.cern.ch/event/661534/</u>
- [3] M. Frankl, A. Lechner, Energy-deposition studies, LIBD Meeting, 05.10.2017, <u>https://indico.cern.ch/event/661534/</u>
- [4] N. Magnin, Operational Procedure, Procedure to change the length of LBDS Abort Gap Keeper, to be published
- [5] D. Jacquet, J. Wenninger, Injection sequencer and SIS protections against incorrect injection requests (into the AG), November 2017
- [6] LHC Operational Procedure, Asynchronous beam dump validation test, EDMS No. 1698830

Thank you for your attention!

Overview of AGK Parameters

N. Magnin, Operational Procedure, Procedure to change the length of LBDS Abort Gap Keeper, to be published

