Trying to reduce corrector strength and residual orbit by profiting of the alignment system capabilities.

D. Gamba, R. De Maria

Outline

- Overview of present orbit correction scenario
- Plans toward a realistic orbit correction strategy
- Old knobs and new knobs
- Profit of the versatile alignment system
- New orbit correction budgets
- Reduced number of correctors
- Questions being investigated
- Summary

Optics under consideration

- Optics (slhc/opt_150_150_150_150_thin.madx)
- $\mathrm{E}=7 \mathrm{TeV}$; $\sigma_{\mathrm{E}}=1.08 \mathrm{e}-4 ; \varepsilon_{\mathrm{N}}=2.5 \mu \mathrm{~m}$
- on_x1=295; on_x5=295; (note that 250 is nominal.)
- on_x8=0; on_x2=0;
- on_lhcb=0; on_alice=0;
" on_sep1=2;on_sep2=0;on_sep5=2;on_sep8=0;
- Considering only IP5
- Errors:
- All square distributions
- (i.e. if $\pm 0.5 \mathrm{~mm}$, then sigma $=0.5 / \mathrm{sqrt}(3)=0.2887 \mathrm{~mm}$)
- Quadrupoles
$\pm 0.5 \mathrm{~mm}$ DX/DY, $\pm 10 \mathrm{~mm}$ DS, ± 0.002 DKR1, $\pm 1 \mathrm{mrad}$ DPSI.
- Dipoles
- $\pm 10 \mathrm{~mm}$ DS, ± 0.002 DKR0, $\pm 0.5 \mathrm{mrad}$ DPSI.

Budget taken for orbit correction

Where we are

To simplify analysis avoided using third corrector on Q5

Where we are: knobs

Where we are: knob effect on orbit

- Solid is B1, dashed is B2

(Exyyyyyyy

Plans

1. Use movers during a technical stop

- implement IP offset, but still have a residual alignment error of (0.5 mm or better if possible)
- less corrector in Q1-Q4, more in Q5-Q7, gain in aperture in Q1-Q4

2. Use movers during beam commissioning

- see if a procedure exists (e.g. k-modulation at injection to calibrate magnetic center with BPM center) to reduce the residual alignment errors to 0 mm with beam observations
- estimate the reduction of orbit corrector strengths $0.5,0.0$

3. Residual orbit at the crab cavities

- How much we are confident of the orbit at the crab cavities?
- That is how much do we have to move the beam to center the cavity or move the cavity (if possible) to center the beam.

4. How to do a good a crossing angle BPM (BI specification, Kmodulation vs beta-error)

Getting rid of offset knob - far-medium

Orbit bump from Q10 to Q5

Parameters

Moving of 2 mm all elements from Q4.L to Q4.R:

Getting rid of offset knob - nearV2

< 0.6 Tm ACBRD;
not using RCBX

Moving of $\sim 1 \mathrm{~mm}$ the triplet

Getting rid of offset knob: resume

- Far-Long/Med: Q1-Q4 of 2 mm
- NearV2: about 1.5 mm on Q3+Q2B, 1 mm Q2A+Q1

| Circuit | Off. $[\pm 2 \mathrm{~mm}]$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Baseline | Far-Med | nearV2 | Baseline | Far-Med | nearV2 | |
| MCBX1 | 1.05 | 0 | 0 | 1.44 | 0.39 | 0.39 | 2.5 |
| MCBX2 | 0.57 | 0 | 0 | 0.96 | 0.39 | 0.39 | 2.5 |
| MCBX3 | 0.99 | 0 | 0.02 | 3.94 | 2.95 | 2.97 | 4.5 |
| MCBRD4 | 0 | 0 | 0.53 | 4.39 | 4.39 | 4.92 | 5 |
| MCBY4 | 0.74 | 0 | 0 | 2.34 | 1.6 | 1.6 | 2.7 |
| MCBYS4 | 0.74 | 0 | 0 | 2.38 | 1.64 | 1.64 | 2.7 |
| MCBY5 | 0 | 0 | 0 | 0 | 0 | 0 | 2.7 |
| MCBYS5 | 0.39 | 0.80 | 0 | 1.7 | 2.11 | 1.31 | 2.7 |
| MCBC6 | 0.47 | 0.31 | 0 | 0.47 | 0.31 | 0 | 2.1 |
| MCBC7 | 1.17 | 0.82 | 0 | 1.17 | 0.82 | 0 | 2.8 |
| MCBC8 | 0 | 0.27 | 0 | 0 | 0.27 | 0 | 2.8 |
| MCBC9 | 0 | 0 | 0 | 0 | 0 | 0 | 2.8 |
| MCB10 | 0 | 0 | 0 | 0 | 0 | 0 | 1.895 |

Improving lumi-scan knob

Without using MCBRD correctors.

Improving lumi-scan knob: resume

- Note that both versions introduce a small orbit at crab cavities ($<0.1 \mathrm{~mm}$)

Circuit	Lumi scan. $[\pm 0.1 \mathrm{~mm}]$		Sum		Budget
	Baseline	New	Baseline	New	
MCBX1	0	0.09	1.44	1.53	2.5
MCBX2	0	0.05	0.96	1.01	2.5
MCBX3	0	0.13	3.94	4.07	4.5
MCBRD4	0.25	0	4.39	4.14	5
MCBY4	0.07	0	2.34	2.27	2.7
MCBYS4	0.11	0.04	2.38	2.31	2.7
MCBY5	0	0	0	0	2.7
MCBYS5	0	0	1.7	1.7	2.7
MCBC6	0	0	0.47	0.47	2.1
MCBC7	0	0	1.17	1.17	2.8
MCBC8	0	0	0	0	2.8
MCBC9	0	0	0	0	2.8
MCB10	0	0	0	0	1.895

Simple beam separation at CC

Without using MCBRD correctors.

New CC adjustment knob

- It only allows to "separate" the beams at CC.
- One should rely on rigid translation of both cryomodules.

Circuit	CC adjustment			Sum		Budget
	$\begin{gathered} 4 \mathrm{cc} \text { off. } \\ {[\pm 0.25 \mathrm{~mm}]} \end{gathered}$	$\begin{gathered} 2 \mathrm{cc} \text { off. } \\ {[\pm 0.5 \mathrm{~mm}]} \end{gathered}$	New 2 CC separation [1 mm]	Baseline	New	
MCBX1	0	0.2	0	1.44	1.24	2.5
MCBX2	0	0.2	0.01	0.96	0.77	2.5
MCBX3	0	0.6	0.15	3.94	3.49	4.5
MCBRD4	0.44	0.42	0.15	4.39	3.68	5
MCBY4	0.41	0.46	0	2.34	1.47	2.7
MCBYS4	0.41	0.46	0.48	2.38	1.99	2.7
MCBY5	0	0	0	0	0	2.7
MCBYS5	0.42	0.89	0.45	1.7	0.84	2.7
MCBC6	0	0	0	0.47	0.47	2.1
MCBC7	0	0	0	1.17	1.17	2.8
MCBC8	0	0	0	0	0	2.8
MCBC9	0	0	0	0	0	2.8
MCB10	0	0	0	0	0	1.895

Improving crossing knob - No Q4

Orbit closed on D2 -> NO orbit at crab cavities

Using most of the strength on MCBRDs!

Not using quads

Improving crossing knob - No Q4 + quads

Orbit closed on D2 -> NO orbit at crab cavities

Using most of the strenght on MCBRDs!

Displacing the triplets

All "new" knobs together

It is in the "other" plane, so they should not sum up.

Circuit	$\begin{aligned} & \text { Cros. } \\ & {[\pm 295} \\ & \text { urad] } \end{aligned}$	Sep. [± 0.75 mm]	$\begin{gathered} \text { Off. (far } \\ \text { med) }[\pm 2 \\ \mathrm{mm}] \end{gathered}$	$\begin{gathered} 2 \text { crab } \\ \text { separation } \\ \text { [1 mm] } \end{gathered}$	Lumi scan. [$\pm 0.1 \mathrm{~mm}]$	Sum (baseline)	Sum New	Budget
MCBX1	0.29	0.08	0	0	0.09	1.44	0.38	2.5
MCBX2	0.8	0.08	0	0.01	0.05	0.96	0.86	2.5
MCBX3	2.9	0.20	0	0.15	0.13	3.94	3.18	4.5
MCBRD4	4.8	0.10	0	0.15	0	4.39	4.95	5
MCBY4	0	0.02	0	0	0	2.34	0	2.7
MCBYS4	0	0.02	0	0.48	0.04	2.38	0.52	2.7
MCBY5	0	0	0	0	0	0	0	2.7
MCBYS5	0	0	0.80	0.45	0	1.7	1.25	2.7
MCBC6	0	0	0.31	0	0	0.47	0.31	2.1
MCBC7	0	0	0.82	0	0	1.17	0.82	2.8
MCBC8	0	0	0.27	0	0	0	0.27	2.8
MCBC9	0	0	0	0	0	0	0	2.8
MCB10	0	0	0	0	0	0	0	1.895

New knobs: orbit effects

- Solid is B1, dashed is B2

Where are the BPMs?

Baseline crossing orbit (taking into account of Survey) with $6 \boldsymbol{\sigma}$ beam size (taking into account beta and dispersion)

Warning: using only BPMs one cannot be sure of the orbit in crab cavities

New orbit correction

Up to 0.05 mm orbit at CC

Resumé: required budget correctors

- Values in Tm at 7 TeV .

Circuit	$\begin{aligned} & \text { IR err- } \\ & \text { [2*std] } \end{aligned}$	Arc err. [2*std]	Lumi scan. [$\pm 0.1 \mathrm{~mm}$]	Cros. $[\pm 295$ urad	$\begin{gathered} \text { Sep. } \\ {[\pm 0.75} \end{gathered}$ mm	$\begin{gathered} \text { IP Off. [} \pm 2 \\ \mathrm{~mm}] \end{gathered}$	sum	budget
ACBX1	0.86	0.01	0.09	0.3	0.08	0	1.25	2.50
ACBX2	1.26	0.01	0.04	0.8	0.08	0	2.1	2.50
ACBX3	0.73	0	0.13	2.88	0.2	0	3.74	4.50
ACBRD4	0.13	0.02	0	4.8	0.1	0	4.93	5.00
ACBY4	0.01	0.04	0	0	0.02	0	0.06	2.70
ACBYS4	0.04	0.08	0.04	0	0.02	0	0.15	2.70
ACBY5	0	0	0	0	0	0	0	2.70
ACBYS5	0.02	0.06	0	0	0	0.8	0.86	2.70
ACBC6	0.03	0.11	0	0	0	0.31	0.42	2.10
ACBC7	0	0.63	0	0	0	0.82	1.45	2.80
ACBC8	0.01	0.66	0	0	0	0.27	0.93	2.80
ACBC9	0	0.59	0	0	0	0	0.59	2.80
ACB10	0	0.65	0	0	0	0	0.65	1.90
ACB11	0	0.58	0	0	0	0	0.58	1.90
ACB12	0	0.62	0	0	0.02	0	0.64	1.90
ACB13	0	0.62	0	0	0	0	0.62	1.90
ACB14	0	0.62	0	0	0	0	0.62	1.90
ACB15	0	0.62	0	0	0	0	0.62	1.90

*** It requires to translate Q1-Q4 of 2 mm in the direction of the required offset.

Resumé: aperture loss/orbit [mm]

Circuit	IR err. [2*std]	Arc err. [2*std]	Lumi scan. [$\pm 0.1 \mathrm{~mm}$]	Cros. [± 295 urad]	$\begin{gathered} \text { Sep. } \\ {[\pm 0.75 \mathrm{~mm}]} \end{gathered}$	$\text { IP Off. [} \pm 2$ $\mathrm{mm}]$	sum
TAXS	0	0	0.1	5.89	0.75	0	5.99
MQXFA.[AB]1	0.61	0	0.12	11.02	0.91	0	11.75
MQXFB.[AB]2	0.69	0	0.19	16.68	1.2	0	17.56
MQXFA.[AB]3	0.66	0.01	0.16	16.66	0.82	0	17.48
MBXF	0.16	0.01	0.17	14.9	0.47	0	15.23
TAXN	0.02	0	0.08	3.89	0.16	0	3.99
MBRD	0.03	0	0.06	1.71	0.1	0	1.8
MCBRD	0.04	0	0.05	0.29	0.06	0	0.38
MCBY[HV].[AB]?4	0.01	0.02	0.01	0	0	0	0.03
MQY. 4	0	0.58	0	0	0	0	0.58
TCLMB. 5	0.02	0.05	0	0	0	0	0.05
MCBY[HV].[AB]?5	0.02	0.07	0	0	0	0	0.07
MQY. 5	0.02	0.62	0	0	0	1.96	2.58
TCLMC. 6	0.03	0.14	0	0	0	1.79	1.93
MCBC[HV]. 6	0.03	0.17	0	0	0	1.74	1.91
MQML. 6	0.03	0.69	0	0	0	1.76	2.45
MCBC[HV]. 7	0.01	0.22	0	0	0	0.55	0.77
MQM.[AB]7	0.01	0.61	0	0	0	0.57	1.18
MCBC[HV]. 8	0.01	0.23	0	0	0	0	0.23
MQML. 8	0.01	0.61	0	0	0	0.06	0.67
MCBC[HV]. 9	0	0.19	0	0	0	0	0.19
MQMC. 9	0	0.59	0	0	0	0	0.59
MQM. 9	0	0.6	0	0	0	0	0.60
MCB[HV]. 10	0	0.26	0	0	0	0	0.26
MQML. 10	0	0.59	0	0	0	0	0.59

New orbit correction (no Q1-5 DX/DY)

New orbit correction (no Q1-5 DX/DY) - split

Open question: how to align quads?

- Possible procedure:

1. Identify centre of quads.
a. Perform k-modulation on each single quad.

- Look at closed orbit perturbation.
b. Modify orbit with corrector at best phase advance until no effect by k modulation.
" Identify centre of quadrupole as "zero orbit" on the attached BPM.

2. Back to initial orbit.
a. Measure orbit response by quadrupole offset.
b. Measure orbit response of correctors.
3. Find best quadrupole movement that minimises orbit and correctors strength.
4. ...

Open question: impact of BPM noise

- Noise/offset on one BPM can induce an IP orbit shift.

Additional remark: transverse errors

- Not all quads are independent.
- e.g. if you move Q1A, you also move Q1B...
- The two apertures are not independent...
- For the time being we consider everything independent.

Summary

- The offset knob can be implemented profiting of the alignment system
- The crossing knob can be closed on D2
- But minimum margin on MCBRD
- We could remove 2 correctors on Q4 and Q5
- Strong assumption that CC can be easily moved, possibly during commissioning with beam
- Alignment of the quadrupoles with beam could be beneficial for aperture optimisation
- A procedure needs to be properly implemented and verified (MD?)
- The impact of BPM noise/error on the orbit correction procedure needs to be assessed
- Strongly depends on type of error, and orbit correction strategy
- Need to profit of LHC experience
- Are all misalignment assumptions correct?

Plans

1. Use movers during a technical stop

- implement IP offset, but still have a residual alignment error of
ot (0.5 mm or better if possible)
- less corrector in Q1-Q4, more in Q5-Q7, gain in aperture in Q1Q4

2. Use movers during beam commissioning

- see if a procedure exists to reduce the residual alignment errors to 0 mm with beam observations
- estimate the reduction of orbit corrector strengths $0.5,0.0$

3. Residual orbit at the crab cavities

How much we are confident of the orbit at the crab cavities?

- That is how much do we have to move the beam to center the cavity or move the cavity (if possible) to center the beam.

4. Niow to do a good a crossing angle BPM (BI specification, Kmodulation vs beta-error)

Backup

Are all imperfections correctly treated by a linear approximation?

- In section where strong non-linearities are present (e.g. nominal sextupoles), the linear approximation might not be correct!
- In case of a pure linear lattice (only quadrupoles and bends):

Imperfection	Linear?	Explanation
Quad. incoming orbit (x_{e})	yes	In first approximation one can write the orbit kick (Δx^{\prime}) as:$\begin{aligned} \Delta x^{\prime} & =\left(x_{e}+x_{0}+\Delta x_{Q}\right) k_{Q_{0}}\left(1+\Delta k_{Q} / k_{Q_{0}}\right) \\ & \approx x_{0} k_{Q_{0}}+x_{e} k_{Q_{0}}+\Delta x_{Q} k_{Q_{0}}+x_{0} k_{Q_{0}} \Delta k_{Q} / k_{Q_{0}} \end{aligned}$
Quad. misalignment ($\Delta \mathrm{x}_{\mathrm{Q}}$)	yes	
Quad. field error ($\Delta \mathrm{k}_{\mathrm{Q}} / \mathrm{k}_{\mathrm{Q} 0}$)	ni	
Quad. roll	ni	Similar to field error (depends on x_{0}) + coupling .
Bend. roll (θ)	Yes (small θ)	$\begin{aligned} & \Delta x^{\prime}=\Delta x_{0}^{\prime}\left[-\sin (\theta)+\Delta k_{B} / k_{B_{0}}\right] \\ & \Delta y^{\prime}=\Delta x_{0}^{\prime} \sin (\theta) \end{aligned}$
Bend. field error ($\Delta \mathrm{k}_{\mathrm{B}} / \mathrm{k}_{\mathrm{BO}}$)	yes	
Longitudinal misalignments	ni	Linear for bends, similar to field error for quads.

- Working hypothesis:
- All non-linear elements (e.g. arc sextupoles) are turned off in the model.
- We are looking for a solution in proximity of the ideal orbit. Non-linear and second order effects are supposed to be small.

CERN

Treatment of errors

- Before
- Always orbit with respect to ideal orbit ($\mathrm{x} / \mathrm{y}=0$)
- After
- Considering that if you move a quadrupole, then the "zero" aperture loss is when the beam is off-centre with respect to the ideal orbit.... i.e. it should pass in the middle of the quadrupole...

Simplified treatment of the problem (last year)

In first approximation the problem is linear and two are the main equations:

- Orbit variation along the a beamline $(\Delta \mathbf{x})$ is linear with respect to misalignments/errors ($\Delta \mathbf{e}$)
- And with respect to correctors strengths ($\boldsymbol{\Delta} \mathbf{c}$)
- The linear coefficients form the matrices RM_{e} and RM_{c}

$$
\overrightarrow{\Delta x}=\mathbf{R}_{\mathbf{e}} \overrightarrow{\Delta e} \quad \overrightarrow{\Delta x}=\mathbf{R M}_{\mathbf{c}} \overrightarrow{\Delta c}
$$

- The response matrices can be measured/extracted by exciting the MAD-X model and measuring the response on the relevant optics parameters.
- One is interested only to correct some key* locations. E.g. in case of misalignments:
- Zero orbit variation at the boundaries of the line (to be "transparent" to the ideal machine)
- No variation of position and crossing angle at the IP
- No orbit excursion at the crab cavity location.
- The problem is simplified to the following equation:

$$
\overrightarrow{\Delta c}=-\operatorname{pinv}\left(\mathbf{R M}_{\mathbf{c}}^{*}\right) \mathbf{R M}_{\mathbf{e}}^{*} \overrightarrow{\Delta e}=\mathbf{R M}_{\mathbf{t o t}} \overrightarrow{\Delta e}
$$

* Where the * matrices are a subset of the measured matrices $\mathbf{R M}_{\mathrm{e}}$ and $\mathbf{R M}_{\mathrm{c}}$ keeping only the important rows.
- The residual orbit at other locations is simply:

$$
\overrightarrow{\Delta x}=\mathbf{R M}_{\mathbf{c}} \mathbf{R M}_{\mathbf{t o t}} \overrightarrow{\Delta e}+\mathbf{R M}_{\mathbf{e}} \overrightarrow{\Delta e}
$$

(ERN)

Treatment of the problem small improvements

RM_{o} is sort of an Identity matrix

- In first approximation the problem is linear and two are the main equations:
- Orbit variation along the a beamline (Δx) ls linear with respect to misalignments/errors ($\Delta \mathbf{e}$)
- And with respect to correctors strengths ($\Delta \mathbf{c}$)
- The linear coefficients form the matrices RM $_{e}$ and RM $_{c}$ New RM ${ }_{e}$ matrix

$$
\overrightarrow{\Delta x}=\mathbf{R M}_{\mathbf{e}} \overrightarrow{\Delta e}-\mathrm{RM}_{\mathrm{o}} \overrightarrow{\Delta e}=\mathrm{RM}_{\mathrm{e}}-\mathbf{R M}_{\mathrm{o}} \overrightarrow{\Delta e} \quad \overrightarrow{\Delta x}=\mathbf{R M}_{\mathbf{c}} \overrightarrow{\Delta c}
$$

- The response matrices can be measured/extracted by exciting the MAD-X model and measuring the response on the relevant optics parameters.
- One is interested only to correct some key* locations. E.g. in case of misalignments:
- Zero orbit variation at the boundaries of the line (to be "transparent" to the ideal machine)
- No variation of position and crossing angle at the IP 3 Use only nearby BPMs
- The problem is simplified to the following equation:

$$
\overrightarrow{\Delta c}=-\operatorname{pinv}\left(\mathbf{R M}_{\mathbf{c}}^{*}\right) \mathbf{R M}_{\mathbf{e}}^{*} \overrightarrow{\Delta e}=\mathbf{R M}_{\mathbf{t o t}} \overrightarrow{\Delta e}
$$

* Where the * matrices are a subset of the measured matrices $\mathbf{R M}_{\mathrm{e}}$ and $\mathbf{R M}_{\mathrm{c}}$ keeping only the important rows.
- The residual orbit at other locations is simply:

$$
\overrightarrow{\Delta x}=\mathbf{R M}_{\mathbf{c}} \mathbf{R M}_{\mathbf{t o t}} \overrightarrow{\Delta e}+\mathbf{R}_{\mathbf{e}} \overrightarrow{\Delta e}
$$

New orbit correction (no ACBRD)

- Same as before, but trying to remove orbit correction from MCBRD correctors.

New orbit correction (no ACBRD)

New orbit correction (no ACBRD; no Q1-5 DX/DY)

New orbit correction (no ACBRD; no Q1-5 DX/DY)

CERN
D. Gamba - 112th HiLumi WP2 meeting

CC alignment knobs

- Assumptions from Miriam's paper:
- residual orbit of $\pm 0.5 \mathrm{~mm}$ can be tolerated in the crab cavities
- https://indico.cern.ch/event/307357/ (2014)
- https://indico.cern.ch/event/323860/ (2014)
- crab cavities represent very sensitive BPMs and one can assume that the orbit displacement at the location of the crab cavities would be known within 0.01-0.1 mm [R. Calaga private com]
- Additional investigations by Riccardo (24/11/2016):
- crabbing plane to max $\pm 1 \mathrm{~mm}$ per cavity, or up to $\pm 2 \mathrm{~mm}$ for transients of few $\mathrm{ms} . \pm 3 \mathrm{~mm}$ if off.
- Additional question: how precise one can measure the orbit? In both planes? With/without RF?
- In the baseline only one pair of CC per beam per side. The two pairs are in two independent cryomodules that can be moved independently.

Getting rid of offset knob - far-short

Moving of 2 mm all elements from Q5.L to Q5.R:

Getting rid of offset knob - far-long

Moving of 2 mm all elements from Q4.L to Q4.R:

CERN

Getting rid of offset knob - nearV1

< 0.6 Tm per corrector.

Moving of $\sim 1 \mathrm{~mm}$ the triplet

Getting rid of offset knob - extreme

$>10 \mathrm{Tm}$.

Movements $>10 \mathrm{~mm}$

Getting rid of offset knob: resume

- Far-Long/Med: Q1-Q4 of 2 mm
- NearV2: about 1.5 mm on Q3+Q2B, 1 mm Q2A+Q1

Circuit	Off. [$\pm 2 \mathrm{~mm}$]				Sum				Budget
	Baseline	Far-Long	Far-Med	nearV2	Baseline	Far-long	Far-Med	nearV2	
MCBX1	1.05	0	0	0	1.44	0.39	0.39	0.39	2.5
MCBX2	0.57	0	0	0	0.96	0.39	0.39	0.39	2.5
MCBX3	0.99	0	0	0.02	3.94	2.95	2.95	2.97	4.5
MCBRD4	0	0	0	0.53	4.39	4.39	4.39	4.92	5
MCBY4	0.74	0	0	0	2.34	1.6	1.6	1.6	2.7
MCBYS4	0.74	0	0	0	2.38	1.64	1.64	1.64	2.7
MCBY5	0	0.51	0	0	0	0.51	0	0	2.7
MCBYS5	0.39	0.55	0.80	0	1.7	1.86	2.11	1.31	2.7
MCBC6	0.47	0.24	0.31	0	0.47	0.24	0.31	0	2.1
MCBC7	1.17	0.46	0.82	0	1.17	0.46	0.82	0	2.8
MCBC8	0	0.23	0.27	0	0	0.23	0.27	0	2.8
MCBC9	0	0.13	0	0	0	0.13	0	0	2.8
MCB10	0	0.27	0	0	0	0.27	0	0	1.895

Improving crossing knob -- default

(here not as optimised as the baseline)

Not using quads

Displacements

 ○○ 〇〇

