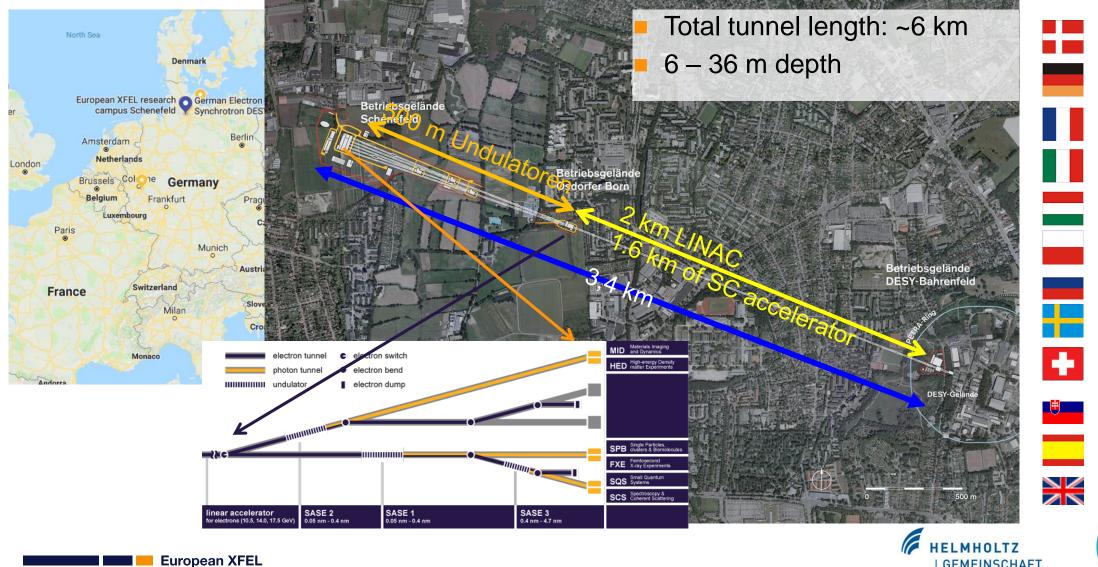
(Some) Lessons Learned from the XFEL Project

Riko Wichmann DESY, MXL Head of the XFEL Project Office


Accelerator-Industry Co-Innovation Workshop Brussels, February 6th to 7th, 2018

European

Overview XFEL Facility

GEMEINSCHAFT

XFEL Lessons Learned

Time Line of the XFEL Project 07/2006 TDR of the European XFEL published

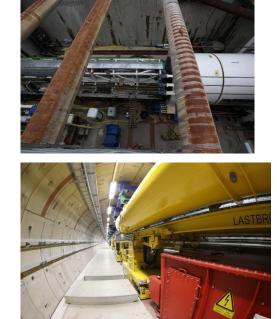
01/2009

08/2014

02/2015

12/2015

07/2016


10/2016

05/2017

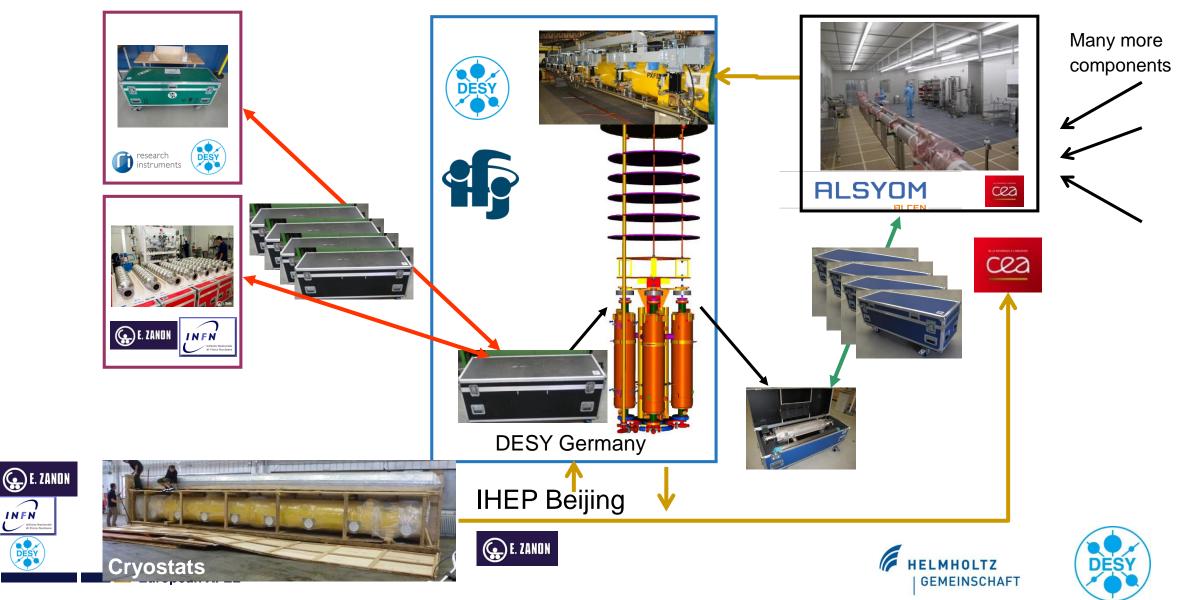
07/2017

- Start of underground civil construction
- Start installation of accelerator components
 - First electron beam of the XFEL
 - Start commissioning of XFEL injector
- Injector Commissioning finished
- Start cool-down of XFEL linac
- First laser light from the XFEL
- Start operation

Riko Wichmann, XFEL Project Office, 07.02.2018

Superconducting Linac

The XFEL Superconducting Linac – Work of Many in the Accelerator Consortium

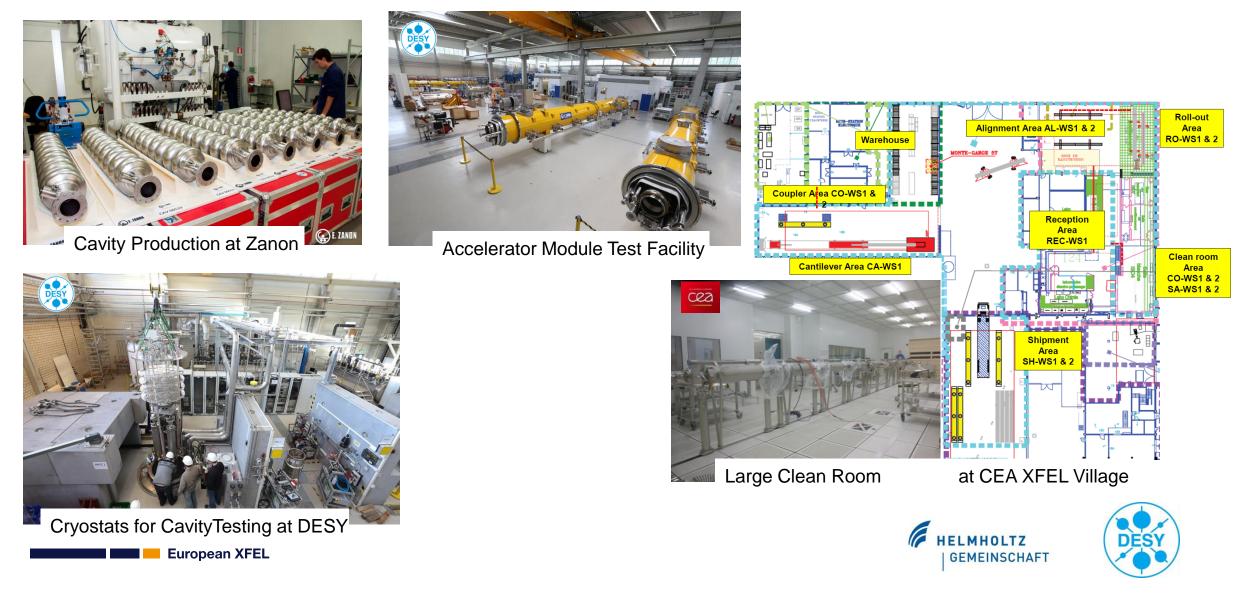


GEMEINSCHAFT

INFN

DES

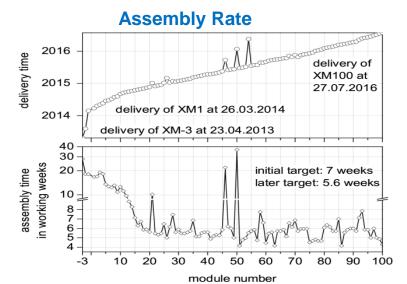
Accelerator Modules – "Collaborative Effort" between Science and Industry



Contributions to the European XFEL Modules

BINP Novosibirsk, Russia	•	cold vacuum bellows and coupler vacuum line
CEA Saclay / Irfu, France	•	cavity string and module assembly cold beam position monitors
	•	magnetic shields, superinsulation blankets
CIEMAT, Spain	•	superconducting magnets
CNRS / LAL Orsay, France	•	RF main input coupler incl. RF conditioning
DESY, Germany	•	cavities & cryostats
	•	contributions to string & module assembly
	•	coupler interlock
	•	frequency tuner
	•	cold vacuum system
	•	integration of superconducting magnets / current leads / cold beam position monitors
INFN Milano, Italy	•	cavities & cryostats
	•	contributions to frequency tuners
Soltan Institute, Poland	•	higher Order Mode coupler & absorber

Large Infrastructures at Research Centers and Industry (examples)



Module Fabrication and Installation Summary

Projected rate for module fabrication, test and installation

Target: 1 Module / week

• Knowledge transfer from science to industry is challenging and requires time

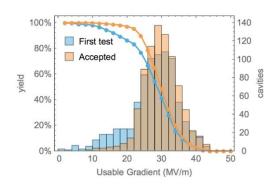
- Throughout the entire production, problems had to be tackled by an <u>collaborative effort</u>
 - Often unexpected problems can be easier solved by the science partner
- Experience allowed significant speed-up of processes for production / assembly / test / installation

HELMHOLTZ

GEMEINSCHAFT

Examples of (Collaborative) Problem Solving

Retreatment of cavities


- Both at the manufacturer and at DESY
- Gave significant improvement in energy gain (about 1.3 GeV)

Copper plating of power coupler

Intense discussions and efforts by <u>all</u> involved experts
 Variety of measures brought production rate up to sustain necessary module assembly rate

Systematic repair work on orbital welds and Ti tubes

- Unexpected discovery of pores on welds early in the module assembly ramp-up
- Collaborative effort to improve welding technique and equipment
 "on the fly" replacement with seamless Ti tubes

The Final Product: a 1.6 km Superconducting Linac

1st module July 1st, 2014 – last module (XM98) August 1st, 2016

Riko Wichmann, XFEL Project Office, 07.02.2018

µTCA Standard

Develop Industry Grade Standards

- Dec. 2007: Decision of µTCA and ATCA as standard for XFEL control system
- Mar. 2009: 1st PCI Industry Computer Manufacturer Group (PICMG) meeting "xTCA for Physics"
- Oct. 2011: Official announcement of PICMG Specification
 - µTCA.4 Enhancements for Rear I/O and Precision Timing
 - Open modular standard
 - Significant developments in the physics research community
 - Fully managed components
 - Remote management
 - Redundancy options
 - High-bandwidth digital signal processing
 - ► Compact, versatile formats

HEIMHOLTZ

GEMEINSCHAFT

Rear Transfer Module (RTM)

RTM

- rear side cable access
- mostly analog
- signal sampling and conditioning

Advanced Mezzanine Card (AMC)

AMC

- mostly digital
- Iatest FPGAs
- data processing

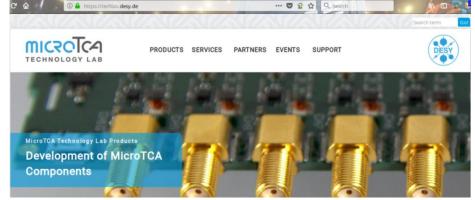
16

Cooperation and Innovation with Industry

Mostly science driven but first indications for other application (e.g. industrial automation, medical, laser systems etc) of the µTCA technology

Need <u>large (science) project</u> like XFEL to establish new technology and provide an initial market
 Successful start-up of facility is the best demonstration and marketing effort

Helmholtz funded µTCA TechLab @ DESY to ease / support access to the µTCA technology



µTCA Tech Lab Hosted by DESY

Fostering the widespread adoption of MicroTCA-based solutions

- Creating an "Enabling Space"
- Especially also in collaboration with industry:
 - Advance research and development for next generation MicroTCA systems
 - Tutorials, trainings and workshops
 - Joint marketing activities
 - Interoperability improvements
 - Provision of Starter Kits and Software Framework / Tool Kits
 - ► AMC/RTM board templates ready to use
 - ► Open source tool kit device and control system independent

18

Lessons Learned

- Building a large research infrastructure (like XFEL) requires good cooperation between science and industry
 - Large building and assembly infrastructures needed at labs and industry
 - Challenging technology requires <u>collaborative effort</u> between science and industry
 - **Knowledge transfer** is crucial, challenging and often (more) time consuming (than expected)
- Technological development for a large science project
 - Can enhance industrial standards
 - Has to potential to create business opportunities beyond the scientific community
 - Creating a dedicated platform helps to widespread technological innovations

