
Introduction to C
Programming Language

by NZP

Sunday, January 31, 2010

What you will learn

Thinking algorithmically

Understanding the Hello World

Variable types, const declarations

Basic I/O

Conditionals, loops

Arrays, char strings

Sunday, January 31, 2010

Thinking Algorithmically

Algorithm: A procedure for solving a problem
in terms of

the actions to be executed,

the order in which the actions are to be
executed.

Specifying the order in a computer program
is called program control.

Sunday, January 31, 2010

Thinking Algorithmically

To develop algorithms, we can use

pseudo-codes,

flowcharts

Sunday, January 31, 2010

Thinking Algorithmically

All programs can be written in terms of three control
structures

Sequence: Statements execute one after the other

Selection: if, if...else, switch

Repetition: for, while, do...while

We can stack them or nest them to develop
algorithms

All structures are single-entry/single-exit!

Sunday, January 31, 2010

Thinking Algorithmically

Single-selection if
statement:

Sunday, January 31, 2010

Thinking Algorithmically

Double-selection if
statement:

Sunday, January 31, 2010

Thinking Algorithmically

Switch
multiple-selection
statement:

Sunday, January 31, 2010

Thinking Algorithmically

Repetition (loop)
statement:

In a for loop
increment
(decrement) is
always the last
statement to be
executed. In
while or do..while,
it is up to you!

Sunday, January 31, 2010

Hello World!
/* A first program in C */
#include <stdio.h>
int main(void)
{
 printf(“Hello World!\n”);
 return 0;
}

Sunday, January 31, 2010

Components of a C
Program

All C programs consist of one or more functions, each
of which contains one or more statements.

The only function that every C program must have is
main()

Library functions: The standard library contains
functions to perform disk I/O, string manipulations, etc.

Header files: Contain information about the library
functions. Added by the #include preprocessor directive

/*...*/ indicates that the line is a comment.

Sunday, January 31, 2010

CASE 1: Counter-
Controlled Repetition

Case: A class of ten students took a
quiz.The grades (integers [0,100]) are
available. Determine the class average on
the quiz.

Sunday, January 31, 2010

Pseudo-code
Set total to zero
Set grade counter to one
While grade counter is less than or equal to ten
Input next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

Sunday, January 31, 2010

Source code
#include <stdio.h>

#define LOWER 1
#define UPPER 10
#define INCREMENT 1

int main(void) {
! int counter, grade, total, average;
 /* initialization phase */
! total = 0;
! counter = 1;
! /* processing phase */
! for (counter=LOWER; counter<=UPPER; counter+=INCREMENT) {
! ! printf("Enter grade:");
! ! scanf("%d",&grade);
! ! total += grade;
! }
! /* termination phase */
! average = total / 10;
 printf("Class average is %d\n",average);
 return 0;
}

Sunday, January 31, 2010

Varaibles types

Type Keyword Size (byte)

character data char 1

signed whole numbers int 4

floating-point numbers float 4

double-precision f-p double 8

valueless void n/a

All variables must be declared before they can be used!

C supports five different basic data types:

printf(“%zu”,sizeof(int)); /* gives size in bytes */

Sunday, January 31, 2010

CASE 2: Sentinel-
Controlled Repetition

Case: Develop a class averaging program
that will process an arbitrary number of
grades each time the program is run.

Sunday, January 31, 2010

Pseudo-code
Set total to zero
Set grade counter to zero
Input first grade
While the user has not yet entered the sentinel
Add the grade into the total
Add one to the grade counter
Input next grade

If the counter is not equal to zero!
Set the average to the total divided by counter
Print the class average

Else
Print “No grades were entered”

Sunday, January 31, 2010

Source code
#include <stdio.h>

int main(void) {
! float average;
! int counter, grade, total;
 /* initialization phase */
! total = 0;
! counter = 0;
! /* processing phase */
! printf("Enter grade, -1 to end:");
! scanf("%d",&grade);
! while (grade != -1) {
! ! total += grade;
! ! counter += 1;
! ! printf("Enter grade, -1 to end:");
! ! scanf("%d",&grade);!!
! }
! /* termination phase */
! if (counter != 0) {
! ! average = (float) total / counter;
! ! printf("Class average is %.2f\n",average);
! }
! else {
! ! printf("No grades were entered\n");
! }
! return 0;
}

Sunday, January 31, 2010

Type Cast
Since both total and counter are integers

total / counter

evaluates to an integer, thus the fractional part is lost!
Use a type cast to overcome this problem

(float) total / counter

creates a temporary copy of total, and a f-p value divided by an
integer gives a floating point value.

%.2f Displays the f-p value rounded to two digits.

Sunday, January 31, 2010

1-D Array: A list of variables that are all the same
type and are accessed through a common name

Array element: An individual variable in an array

Declaration: Declare a 1-D array by:
 type var_name[size];
where size is the number of elements in the array

You may use the value of an array element
anywhere you would use a simple variable or
constant

Arrays

Sunday, January 31, 2010

To print the sum of the values contained in the
first three elements of i:

 printf(“%d”, i[0] + i[1] + i[2]);

To input a numeric value into an array element

 scanf(“%d”, &i[0]);

You may not assign one entire array to another!

 char a1[10], a2[10];
 a2 = a1; /* this is wrong */

Arrays

Sunday, January 31, 2010

Initializing an Array

Value list: Use a comma separated list:

 int n[10] = { 1,2,3,4,5,6,7,8,9,10 };

Rule: Fewer initializers than elements, the
remaining elements are initialized to ZERO.

Rule: Arrays are not automatically
initialized to zero. At least the first
element must be initialized to ZERO.

Sunday, January 31, 2010

Initializing an Array
Using a repetition structure

#include <stdio.h>
#define SIZE 10

int main(void) {
! float s[SIZE];
! int j;
! for (j=0; j < SIZE; ++j) {
! ! scanf("%f", &s[j]);
! }
! printf("%s%13s\n", "Element", "Value");
! for (j=0; j < SIZE; j++) {
! ! printf("%7d%13.2f\n", j, s[j]);
! }
! return 0;
}

Sunday, January 31, 2010

Text

SAMPLE INPUT & OUTPUT

Sunday, January 31, 2010

Strings as Char Arrays

The most common use of the 1-D array is the
string.

string = Null-terminated character array

A null is zero: ‘\0’

Be sure to make room for the null!

The size of the following string is 5 + 1 = 6
char str[]=”first”;
char srt[] = {‘f’,’i’,’r’,’s’,’t’,’\0’}; /* equivalent */

Sunday, January 31, 2010

Strings as Char Arrays
scanf() can be used to read a string using the %s conversion
specifier. But: scanf() stops reading when first white space
character is encountered.

white space character = space, tab, newline

#include <stdio.h>

int main(void) {
! char str[80];
! printf("Enter a string: ");
! scanf("%s",str);
! printf("%s\n",str);
! return 0;
}

Sunday, January 31, 2010

