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Idea
The quasi-local energy definition of Brown and York is able to discriminate between the uncompactified Minkowski 
spacetime and the toroidal Kaluza-Klein compactification.
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Quasi-local energy 
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Comparison of the QLE 
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Free falling 
observer 

The energy momentum cannot be a four-vector because it can 
always be made to vanish locally in a free falling frame.

Energy in GR 

Solution

Zero gravitational 
energy  

∇μTμν = 0 ∂μTμν = − Γμ
μλT
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Covariantly conserved 

The purely gravitational 
contribution is not a tensor
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 Associate to a given hypersurface of a spacetime,                       

the integral of the trace of the extrinsic curvature. 

Take a point and send geodesics  of 
fixed length normal to the time 
direction.

Σ ↪ M

This defines a spacelike hypersurface      .Σ

The quasi-local energy (QLE) is defined as    

Q(Σ) ≡ ∫∂Σ
K − E0

KA
ab ≡ − tλ

btα
a ∇λnA

α

where the extrinsic curvature tensor is given by
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a

nA
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Tangent vectors

Normal vectors

The extrinsic curvature of the 
hypersurface is sensitive to the 

strength of the gravitational field

n-dimensionalm-dimensional

a = 1,...,m

A = 1,...,p

QLE of

QLE of

M5

M4 × S1

l/L =
1
π

Radius of the sphere 
smaller than the periodicity 
of the compact dimension

   Codimension-2 spheres in            M5

Both QLEs collapse to the 
same value 

The QLE could provide an energetical argument in favour of 
compactified or uncompactified spacetimes.

More general setups need to be studied, such as the introduction 
of fluxes in order to stabilise the compact dimensions.

It could be interesting to see whether the QLE can be used to 
compute the total energy of full spacetimes in a more 
covariant way. 

y1 = T,
i=5

∑
i=2

(yi)2 ≡ L2 .
Three-sphere defined by the embedding 

p ≡ (n − m) Codimension of the hypersurface

QM5
= ∫∂Σ

h KαnαdS = 6π2L2

The two normal vectors read  

nA ≡ ( ∂
∂t

,
yi

L
∂

∂yi ) A = 1,2

The three tangent vectors read  

tθ1
= L (0,c θ1 s θ2 s θ3, c θ1 s θ2 cθ3, c θ1 cθ2, − sθ1)

tθ2
= L (0,s θ1 c θ2 s θ3, s θ1 c θ2 cθ3, − sθ1 sθ2,0)

tθ3
= L (0,s θ1 s θ2 c θ3, − s θ1 s θ2 sθ3,0,0)

So that the induced metric is
dσ2 = habdyadyb = − L2 (dθ2

1 + sin2 θ1 dθ2
2 + sin2 θ1 sin2 θ2 dθ2

3)

Hence, the extrinsic curvature tensor yields KA
ab = (0, −

1
L

δαβtα
a tβ

b )

The QLE corresponding to M5

(Spherical coordinates)

Kα = KAnα
A = hab KA

abn
α
A

The trace of the extrinsic 
curvature is given by 

And the integration measure  h nα dS = nα L3 sin2 θ1 sin θ2 dθ1dθ2dθ3

Σ

  

  

  Codimension-2 spheres in M4 × S1

Everything looks the same as in the previous case, but now the 
integration is different for the compact coordinate       .  

For small 3-spheres that completly lie within the compact dimension,

When               , there are self intersections 
of the hypersurface, due to the periodicity 
of the compact dimension.  
The range is restricted                            . −lπ ≤ y5 ≤ lπ

QM4×S1
= 6π2L2 for L ≤ lπ

QM4×S1
= 12π2l L2 − π2l2 + 12πL2 tan−1 ( πl

L2 − π2l2 ) for L > lπ

L < 2πl

y5

The QLE yields       
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