

ROYAL INSTITUTE OF TECHNOLOGY

Thermalization of inelastic dark matter in the Sun Eur. Phys. J. C78 (2018) no.5, 386 [arXiv:1802.06880]

Mattias Blennow, **Stefan Clementz**, and Juan Herrero-Garcia Department of physics, School of Engineering Sciences, KTH Royal Institute of Technology - AlbaNova University Center, Roslagstullsbacken 21, 106 91 Stockholm, Sweden

Introduction

Two states χ and χ^* that satisfy

 $m_{\chi^*} - m_{\chi} = \delta, \qquad m_{\chi} \gg |\delta|.$

Primary scattering:

 $\chi + X \iff \chi^* + X.$

Inelastic since energy is absorbed or

Relevant scattering vertex:

 χ_2

Evolved distributions

We evolve distributions neglecting additional capture and annihilation for a full solar lifetime.

released when scattering.

Possibly captured by the Sun, annihilate, and give rise to high-energy neutrinos. The annihilation rate depends on the DM number density.

However, Large velocities required for $\chi \rightarrow \chi^*$ scattering to be kinematically allowed.

• Does inelastic DM thermalize?

• If not, how is the annihilation rate affected? • Does $\chi^* \to \chi$ scattering increase evaporation rates?

Simulation setup

A particle in orbit characterized by reduced angular momentum L = $|\vec{r} \times \vec{v}|$ and energy

 $E = \frac{1}{2}\dot{r}^2 + \frac{L^2}{2r^2} + \phi(r) \,.$

Particles are distributed into states f_{α} , orbits with discretized values of E and L, f_{α} . The distribution evolves according to

• Negligible number of χ^* remaining at $t = t_{\odot}$ is zero. • A thermal Boltzmann distribution is generally a bad fit.

Comparing distributions with $m_{\chi} = 100$ GeV.

$\dot{f}_{\alpha} = C_{\alpha} + \sum_{\beta} \Sigma_{\beta \to \alpha} f_{\beta} - f_{\alpha} \sum_{\beta} \Gamma_{\alpha\beta} f_{\beta} \,.$

- C_{α} : Capture rate into state α
- $\Sigma_{\beta \to \alpha}$: Scattering rate from state β to α
- $\Gamma_{\alpha\beta}$: Annihilation rate for a particle in state α and another in β .

Capture rates

Capture rates calculated numerically where particles are sorted into the corresponding states.

• Capture of χ leaves particles more strongly bound. • Elastic and exothermic scattering very similar.

• Much wider distribution for the inelastic case.

Annihilation and evaporation

An upper bound on the annihilation rate can be calculated from distributions calculated taking continuous capture into account.

Scattering rates

MC methods are employed to calculate $\Sigma_{\beta \to \alpha}$.

• Elastic scattering is identical in behaviour to exothermic scattering. • Inelastic scattering is kinematically forbidden in some regions.

DOOSIS	when χ	scatters
•		
an issue	e.	

Conclusions

- Inelastic DM does not thermalize in the Sun.
- No equilibrium between capture and annihilation in these models. • No significant evaporation from χ^* scattering.

Contact information

Mattias Blennow, emb@kth.se Stefan Clementz, scl@kth.se Juan Herrero-Garcia, juan.herrero-garcia@coepp.org.au