Baryogenesis from R-parity breaking: the role of flavour

Giorgio Arcadi, Laura Covi, Fiona Kirk

Starting point

We observe:

$$\frac{\Omega_{\Delta B}}{\Omega_{DM}} \sim \frac{1}{5} \qquad \text{whereas} \qquad \eta \equiv \frac{n_B}{n_\gamma} = \frac{n_b - n_{\bar{b}}}{n_\gamma} \approx 6 \times 10^{-10}$$

Why so similar?

Possible explanation:

Contemporary production of the BAU and of DM from the out-ofequilibrium decay of a mother particle

 $\Rightarrow \Omega_{\Delta B} \sim \Omega_{DM}$ if both production mechanisms are suppressed by comparably small numbers.

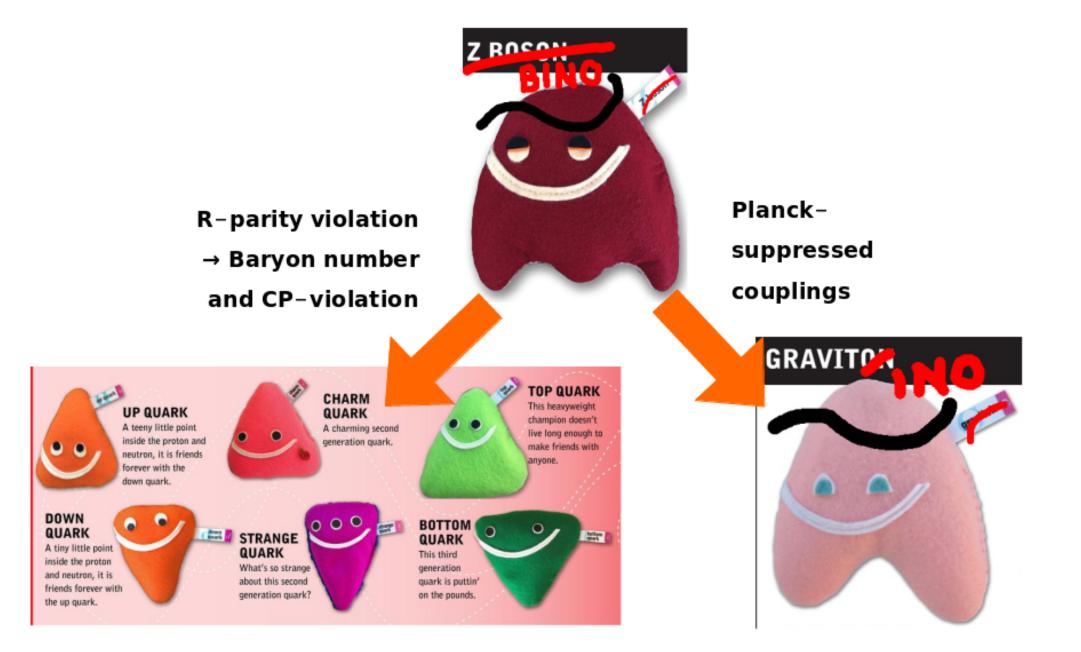
Interactions

R-parity violating vertex:

$$\mathcal{L}_{udd} \ni 2\varepsilon^{\alpha\beta\gamma}\lambda_{ijk}^{\prime\prime} \left[\Gamma_{R\aleph i}^{u\ast}\tilde{u}_{\aleph\alpha}\overline{d^c}_{j\beta}P_Rd_{k\gamma} + \Gamma_{R\aleph j}^{d\ast}\tilde{d}_{\aleph\beta}\overline{u^c}_{i\alpha}P_Rd_{k\gamma} \right] + h.c.$$

where \tilde{q}_{\aleph} , $\aleph = 1, \ldots, 6$ are the squark mass eigenstates, \tilde{q}_{Li} and \tilde{q}_{Ri} , $i = 1, \ldots, 3$ are the left- and right-handed squarks. λ''_{ijk} is antisymmetric in j, k.

Neutralino-sfermion-fermion vertex:


 $\mathcal{L}_{\tilde{\chi}\tilde{f}f} \ni \overline{\tilde{\chi}}(\Gamma_{L\aleph i}^{f}g_{\tilde{\chi}}^{LL}P_{L} + \Gamma_{R\aleph i}^{f}g_{\tilde{\chi}}^{RR}P_{R})f_{i}\tilde{f}_{\aleph}^{*}$

Implementation

MSSM with the R-parity (and baryon number-) violating operator

$\lambda'' U^c D^c D^c$

 \Rightarrow avoid constraints from proton stability \Rightarrow R-parity violation: superpartners decay into SM-particles.

Here $\tilde{\chi} = \tilde{B}, \tilde{G}$ and $f, \tilde{f} = u, \tilde{u}, d, \tilde{d}$. $g_{\tilde{B}, \tilde{G}}^{LL, RR}$ are the usual coupling constants of the bino and the gluino:

$$g_{\tilde{B}}^{LL} = -\sqrt{2}g_1(Q_f - T_3) \quad g_{\tilde{B}}^{RR} = -\sqrt{2}g_1Q_f \quad g_{\tilde{G}}^{LL} = -\sqrt{2}g_3 \quad g_{\tilde{G}}^{RR} = \sqrt{2}g_3$$

Previous works

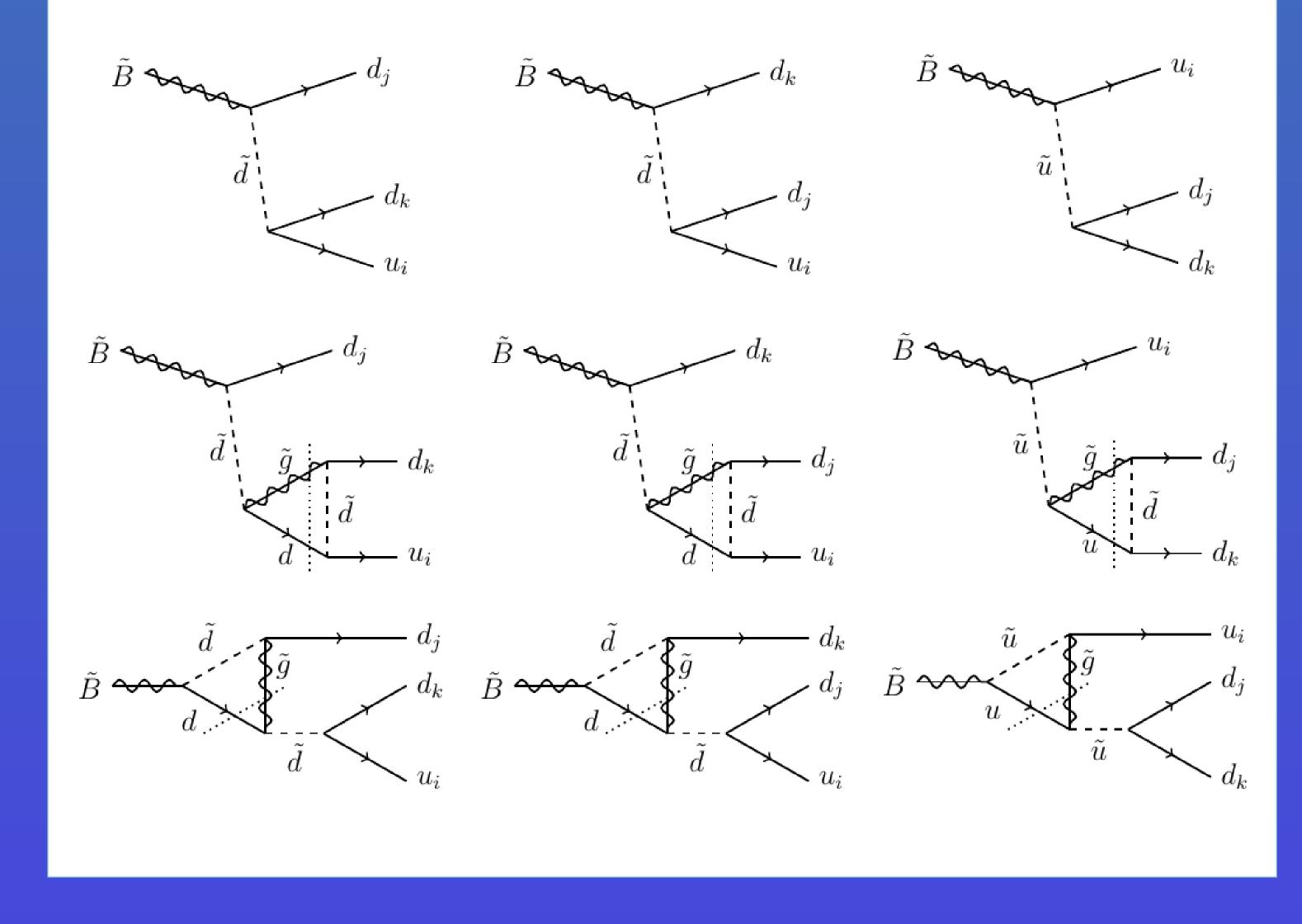
- Y. Cui, JHEP **1312** (2013) 067 doi:10.1007/JHEP12(2013)067
 [arXiv:1309.2952 [hep-ph]].
- G. Arcadi, L. Covi and M. Nardecchia, Phys. Rev. D 89 (2014) no.9, 095020 doi:10.1103/PhysRevD.89.095020 [arXiv:1312.5703 [hep-ph]].
- G. Arcadi, L. Covi and M. Nardecchia, Phys. Rev. D 92 (2015) no.11, 115006 doi:10.1103/PhysRevD.92.115006 [arXiv:1507.05584 [hep-ph]].

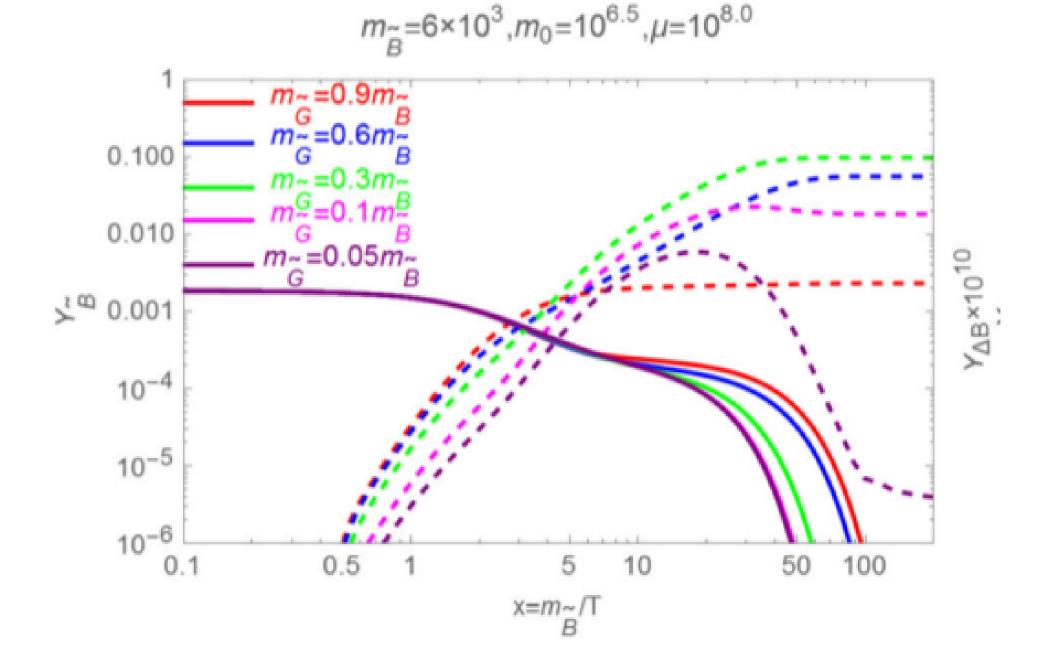
Arcadi et al. (2015): The correct DM and baryon relic densities can be obtained in this set-up with

- a bino mass, 50 TeV < $m_{\tilde{B}} <$ 100 TeV
- a gluino NLSP mass, 15 TeV $< m_{\tilde{G}} <$ 60 TeV and
- a gravitino mass, 100 GeV $< m_{\tilde{g}} <$ a few TeV.

baryonic matter

dark matter


All three **Sakharov conditions** are satisfied:


- Baryon number violation in the R-parity violating coupling $\lambda'' U^c D^c D^c$
- **CP-violation** from the interference between tree-level- and oneloop-contributions to the decay of the bino into quarks Nanopoulos-Weinberg equality at lowest order: $|\langle f|T|X|\rangle|^2 - |\langle X|T|f|\rangle|^2 = -2 \operatorname{Im} \left[\left(\sum_h \langle f|T|h\rangle \langle h|T^{\dagger}|X\rangle \right) \langle f|T^{\dagger}|X\rangle \right]$

Departure from equilibrium The bino \tilde{B} decays after freezing out.

Generation of the BAU

The contributing diagrams are:

Bino (solid ligns) and baryon yields (dashed ligns) for fixed $m_{\tilde{B}}$, m_0 (squark masses), μ (the suppression factor of $\tilde{B}\tilde{B} \to HH^*$ pair annihilation), $\lambda = 0.3$ and for four values of $m_{\tilde{G}}$ ranging from 0.05 $m_{\tilde{B}}$ to 0.9 $m_{\tilde{B}}$. Plot taken from Arcadi et al. (2015)

- These results where obtained for the case of
 - degenerate right-handed down-type squarks
 - flavour-diagonal mixing matrices Γ — zero quark masses.

Outlook

- Aim: Improve the study (enlarge the parameter space) by including additional diagrams
 - allowing for non-degenerate squark masses
 - considering the flavour structure (in the Γs)
- $\Rightarrow Flavour \ effects \ in \ the \ decay \ and \ wash-out \ ? \\\Rightarrow Natural \ explanation \ of \ the \ ratio \ of \ baryon-to-DM \ densities \ ?$

EuropeanHorizon 2020CommissionFor Research & Innovation