

Lecture Overview

- Neutrino overview
 - Physics & astrophysics
 - A bit on neutrino oscillations
- Neutrino interactions with matter
 - Neutrino-nucleus cross sections at ~GeV energies
 - Neutrino-nucleus interactions at ~10-MeV energies

two examples

Lecture '

Neutrinos from core-collapse supernovae

Lecture 2

Neutrino mass and the nature of the neutrino

Lecture 3

Zoom in to the ~ MeV to few tens of **MeV** energy range MeV GeV keV TeV Water target Protons Copper beam stop

Physics/astrophysics of interest in this energy range (few to few tens of MeV)

Supernova neutrinos: burst and "relic"

Solar neutrinos

Geoneutrinos

Reactor neutrinos

Radioactive sources

Stopped-pion neutrinos

I'll talk about supernova neutrinos, but much is relevant for other sources

Neutrinos from core collapse

Just as gravitational potential energy turns into kinetic (and thermal) energy when an object falls,

.... as the star falls inward, the gravitational energy *must go somewhere*...

The energy *can* escape via neutrinos, thanks to the weakness of the neutrino interactions

~99% of the vast binding energy of the proto-neutron star is shed within ~10 seconds in the form of neutrinos and antineutrinos of all flavors

The core-collapse supernova explosion is still not well understood... numerical study ongoing

Marek & Janka

Neutrinos are intimately involved

Blondin, Mezzacappa, DeMarino

Jargon alert!

In particle physics, an "event" is *not* this...

~10⁵²⁻⁵³ ergs

It's an individual recorded neutrino interaction:

few times 10⁻⁵ ergs

e.g., "the IMB neutrino detector saw 8 events from 1987A"

Expected neutrino luminosity and average energy vs time

Vast information in the *flavor-energy-time profile*

Nominal expected flavor-energy hierarchy

Fewer interactions w/ proto-nstar \Rightarrow deeper v-sphere \Rightarrow hotter v's

May or may not be robust...

Neutrino flavor oscillations (governed by fundamental neutrino parameters) will modify the spectra

Neutrino spectrum from core collapse

Fluxes as a function of time and energy

Supernova 1987A in the Large Magellanic Cloud (55 kpc away)

~two dozen neutrino interactions observed!

SN1987A in LMC

v's seen ~2.5 hours before first light

Confirmed baseline model... but still many questions

Some colleagues singing Happy Birthday to a supernova

What can we learn from the next neutrino burst?

observations

input from neutrino experiments

NEUTRINO and OTHER PARTICLE PHYSICS

v absolute mass (not competitive)
v mixing from spectra:
flavor conversion in SN/Earth
(mass hierarchy)
other v properties: sterile v's,
magnetic moment,...
axions, extra dimensions,
FCNC, ...

+ EARLY ALERT

Information is in the *energy, flavor, time* structure of the supernova burst

Size	~kton detector mass per 100 events @ 10 kpc
Low energy threshold	~Few MeV if possible
Energy resolution	Resolve features in spectrum
Angular resolution	Point to the supernova! (for directional interactions)
Timing resolution	Follow the time evolution
Low background	BG rate << rate in burst; underground location usually excellent; surface detectors conceivably sensitive
Flavor sensitivity	Ability to tag flavor components
High up-time and longevity	Can't miss a ~1/30 year spectacle!

Note that many detectors have a "day job"...

	Electrons		
	Elastic scattering		
Charged	$\nu + e^- \to \nu + e^-$		
current	e		
Neutral current	νe		
	Useful for pointing		

	Electrons	Protons	
	Elastic scattering	Inverse beta decay	
Charged	$\nu + e^- \to \nu + e^-$	$\bar{\nu}_e + p \to e^+ + n$	
current	[-] v _e •	$\overline{\nu}_{\rm e}$ e^+ γ	
		Π `~ Υ	
	e ⁻	Elastic scattering	
Neutral current	ν	ν	
	Useful for pointing	very low energy recoils	

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $ar{ u}_e + p ightarrow e^+ + n$	$\nu_e + (N, Z) \to e^- + (N - 1, Z + 1)$ $\bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1)$
Charged current	e	v_{e} v_{e}	n Verious possible
Neutral current	ν e -	Elastic scattering P	$ u + A \rightarrow v + A^* $ ejecta and deexcitation products
	Useful for pointing	very low energy recoils	$ u + A \rightarrow \nu + A $ Coherent elastic (CEvNS)

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$\nu_e + (N, Z) \to e^- + (N - 1, Z + 1)$ $\bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1)$
Charged current	e	$\frac{\gamma}{\nu_e}$ $\frac{\rho^+}{n}$	n () (
Neutral current	νe ⁻	Elastic scattering P	$ u + A \rightarrow v + A^* $ ejecta and deexcitation products
	Useful for pointing	recoils	$ u + A \rightarrow \nu + A $ Coherent elastic (CEvNS)

IBD (electron antineutrinos) dominates for current detectors

Cross-sections in this energy range

Of these, only IBD and ES on electrons well understood theoretically (or experimentally)...

Neutrino interaction thresholds

Current main supernova neutrino detector types

+ some others (e.g. DM detectors)

Water Cherenkov detectors

- See Cherenkov light from the positron (~positron is isotropic) Can't see 0.511 MeV γ's (why not?)
- More on neutron detection in a bit
- Limited by photocoverage (SK: ~40% → ~6 pe/MeV)

Super-Kamiokande

Water Cherenkov detector in Mozumi, Japan

Supernova signal in a water Cherenkov detector

$$v_{e,x} + e^- \rightarrow v_{e,x} + e^-$$

Pointing from neutrino-electron elastic scattering

$$\delta(\theta) \sim \frac{30^{\circ}}{\sqrt{N}}$$

degraded by isotropic IBD

Pointing in Water Cherenkov: Super-K

Right ascension (deg.)

Fit to ES+ mildly anisotropic IBD (+16O)

http://snews.bnl.gov/snmovie.html

Neutron tagging in water Cherenkov detectors

$$\bar{\nu}_e + p \rightarrow e^+ + n$$
 \Rightarrow detection of neutron tags event as electron antineutrino

- especially useful for DSNB (which has low signal/bg)
- also useful for disentangling flavor content of a burst (improves pointing, and physics extraction)

R. Tomas et al., PRD68 (2003) 093013 KS, J.Phys.Conf.Ser. 309 (2011) 012028; LBNE collab arXiv:1110.6249 R. Laha & J. Beacom, PRD89 (2014) 063007

"Drug-free" neutron tagging

$$n + p \rightarrow d + \gamma (2.2 \text{ MeV})$$

~200 μs thermalization & capture, observe Cherenkov radiation from γ Compton scatters

→ with SK-IV electronics, ~18% n tagging efficiency SK collaboration, arXiv:1311.3738;

Enhanced performance by doping!

use gadolinium to capture neutrons

(like for scintillator)

J. Beacom & M. Vagins, PRL 93 (2004) 171101

Gd has a huge n capture cross-section: 49,000 barns, vs 0.3 b for free protons

$$n + Gd \rightarrow Gd^* \rightarrow Gd + \gamma$$

$$\sum E_{\gamma} = 8 \, MeV$$

About 4 MeV visible energy per capture

H. Watanabe et al., Astropart. Phys. 31, 320-328 (2009)

SK-Gd going ahead, starting this summer

SK-Gd schedule

- Detailed schedule planning is on-going taking into account T2K beam availability.
- Earliest possible Gd in Super-K would be in late 2019.

- T0: Start date the Super-K tank refurbishment (May 31,2018).
- T1: First Gd loading; 0.02% of Gd₂(SO₄)₃8H₂O (~ 50% cap. Eff)
- T2: Final Gd loading; 0.2% of Gd₂(SO₄)₃ 8H₂O
 M. Ikeda, Neutrino 2018

No core collapses allowed for the next ~4 months!!

To progenitors of the Galaxy: you must hold it in!

Next generation: **Hyper-Kamiokande**

Long string water Cherenkov detectors

Nominally multi-GeV energy threshold... but, may see burst of low energy (anti-) v_e 's as coincident increase in single PMT count rate

Map overall time structure of burst by tracking the single-PMT hit glow

Long string water Cherenkov detectors

IceCube collaboration, A&A 535, A109 (2011)

Map overall time structure of burst

Scintillation detectors

Many examples worldwide of current and future detectors

Liquid hydrocarbon (C_nH_{2n}) that emits (lots of) photons when charged particles lose energy in it

Will see supernova

electron antineutrinos,

with good energy resolution

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

Scintillation detectors

Liquid scintillator (C_nH_{2n}) volume surrounded by photomultipliers

- lots of photons:
 few 100 pe/MeV
 →low threshold,
 good energy
 resolution
- little pointing capability

 (light is ~isotropic
 even if interaction were directional...)
- can also dope with Gd

retrieve
the energy
of the
n-capture
and
annihilation
γ's

Interaction channels in scintillator

Current and near-future scintillator detectors

KamLAND (Japan) 1 kton

Borexino (Italy) 0.33 kton

LVD (Italy) 1 kton

SNO+ (Canada) 1 kton

NOvA (USA) 14 kton

(on surface, but may be possible to extract counts for known burst)

Future detector proposals

JUNO (China) 20 kton

Jinping (China) 2 kton

THEIA (TBD) 50-100 kton WbLS

Liquid argon time projection chambers

fine-grained trackers sensitive to **electron neutrinos**

(as opposed to antineutrinos)

$$\nu_e + {}^{40}{\rm Ar} \rightarrow e^- + {}^{40}{\rm K}^*$$

ICARUS (Italy→USA) 0.6 kton

MicroBooNE (USA) 0.2 kton

SBND (USA) 0.112 kton

DUNE (USA) 40 kton

Low energy neutrino interactions in argon

Charged-current absorption

$$v_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$$
 Dominant

$$\nabla_{\rm e}$$
 + ⁴⁰Ar \rightarrow e⁺ + ⁴⁰Cl*

Neutral-current excitation

$$v_x + {}^{40}Ar \rightarrow v_x + {}^{40}Ar^*$$
 information in literature

Elastic scattering

$$v_{e,x} + e^- \rightarrow v_{e,x} + e^-$$
 Can use for pointing

Less

In principle can tag modes with deexcitation gammas (or lack thereof)...

Cross sections in argon

Flavor composition as a function of time

Energy spectra integrated over time

For 40 kton @ 10 kpc, Garching model (no oscillations)

Note that the **neutronization burst gets substantially suppressed** with flavor transitions

Simple MSW assumption (assume OK at early times)

NMO: $F_{\nu_e} = F_{\nu_x}^0$

IMO: $F_{\nu_e} = \sin^2 \theta_{12} F_{\nu_e}^0 + \cos^2 \theta_{12} F_{\nu_r}^0$

(a robust mass ordering signature!)

Deep Underground Neutrino Experiment (DUNE)

4800 mwe undergound in South Dakota 70 kton LAr (40 kton fiducial, 4x10 kton) 1.2 MW beam from FNAL for long-baseline osc first module in 2024, beam in 2026

- mass ordering & CPV
- supernova burst
- nucleon decay

Lead-based supernova detectors

$$v_e$$
 + ²⁰⁸Pb \rightarrow ²⁰⁸Bi* + e⁻ CC
 \searrow 1n, 2n emission

$$v_x$$
 + ²⁰⁸Pb \rightarrow ²⁰⁸Pb* + v_x NC
1n, 2n, γ emission

Relative 1n/2n rates sharply dependent on neutrino energy ⇒ spectral sensitivity

SNO ³He counters + 79 tons of Pb: ~1-40 events @ 10 kpc

³He counters for neutron detection

$$^{3}{\rm He} + n \rightarrow p + t + 764 \; {\rm keV}$$

proportional counter measures ionization deposition by p, t final state charged particles

Coherent elastic neutrino-nucleus scattering (CEvNS)

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

Nucleon wavefunctions in the target nucleus are in phase with each other at low momentum transfer

For QR << 1,

[total xscn] $\sim A^2 *$ [single constituent xscn]

A: no. of constituents

Detector example: XENON/LZ/DARWIN

dual-phase xenon time projection chambers

Lang et al.(2016). Physical Review D, 94(10), 103009. http://doi.org/10.1103/PhysRevD.94.103009

What will be learned?

The so-called "neutrino floor" for DM experiments

Think of a SN burst as "the v floor coming up to meet you"

Summary of supernova neutrino detectors

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK IV)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10^6)	Running
Baksan	Scintillator	Russia	0.33	50	Running
Mini- BooNE	Scintillator	USA	0.7	200	(Running)
HALO	Lead	Canada	0.079	20	Running
Daya Bay	Scintillator	China	0.33	100	Running
NOvA	Scintillator	USA	15	3000	Running
SNO+	Scintillator	Canada	1	300	(Running)
MicroBooNE	Liquid argon	USA	0.17	17	Running
DUNE	Liquid argon	USA	40	3000	Proposed
Hyper-K	Water	Japan	540	110,000	Proposed
JUNO	Scintillator	China	20	6000	Proposed
PINGU	Long string	South pole	(600)	(10^6)	Proposed

plus reactor experiments, DM experiments...

Example signals in future detectors

An example of a robust MO signature: the neutronization burst

Distance reach for future detectors

SK will see ~1 event from Andromeda; HK will get a ~dozen

For supernova neutrinos, the more, the merrier!

SNEWS: SuperNova Early Warning System

- Neutrinos (and GW) precede em radiation by hours or even days
- For promptness, require *coincidence* to suppress false alerts

- Running smoothly for more than 10 years, automated since 2005

Sociological comments...

The neutrinos are coming!

Far side of the Milky Way is ~650 light-centuries away...
... ~2000 core collapses have happened already....

\begin{aside}

Interactions with nuclei (cross sections & products) very poorly understood... sparse theory & experiment (only measurements at better than ~50% level are for ¹²C)

Neutrinos from pion decay at rest have spectrum overlapping with SN ν spectrum, e.g., at ORNL Spallation Neutron Source

A. Bolozdynya et al., arXiv:1211.5199

Fluence at ~50 m from the stopped pion source amounts to ~ a supernova a day!

(or 0.2 microsupernovae per pulse, 60 Hz of pulses)

Currently measuring *neutrino-induced neutrons* in lead, (iron, copper), ...

Supported by five 1"-OD steel rods

Take-Away Messages

Vast information to be had from a core-collapse burst!

- Need energy, flavor, time structure

Current & near future detectors:

- ~Galactic sensitivity (SK reaches barely to Andromeda)
- sensitive mainly to the $\overline{\nu}_{e}$ component of the SN flux
- excellent timing from IceCube
- early alert network is waiting

Future detectors

- huge statistics: extragalactic reach
- richer flavor sensitivity (e.g. v_e in LAr!)
- multimessenger prospects
- DSNB prospects improving

