An introduction to Diffraction

Alan Martin (IPPP,Durham) Wilhelm and Else Heraeus Physics School "Diffractive and EM processes at HE" Heidelberg, September 2-6th 2013 Two alternative definitions:

 Diffraction is elastic or quasi-elastic scattering caused, via s-channel unitarity, by the absorption of components of the wave functions of the incoming particles
 e.g. pp→pp, pp→pX (single proton dissociation, SD), pp→XX (both protons dissociate, DD)

quan.no. of p

 A diffractive process is characterized by a large rapidity gap (LRG), which is caused by t-channel Pomeron exch. (or, to be more precise, by the exchange corresponding to the rightmost singularity in the complex angular momentum plane with vacuum quantum numbers). Let us start with the

s-channel viewpoint

Unitarity gives us the optical theorem

S matrix and the Optical Theorem

$$\sum_{n} P(i \to n) = 1 = \sum_{n} |\langle n|S|i \rangle|^{2} = \sum_{n} \langle i|S^{\dagger}|n \rangle \langle n|S|i \rangle = \langle i|S^{\dagger}S|i \rangle = 1$$

true for any $|i\rangle$, so $S^{\dagger}S = I$. Introduce trans matrix T : $S = I + iT$
 $(I - iT^{\dagger})(I + iT) = I$
 $i(T^{\dagger} - T) = T^{\dagger}T$
 $i\langle f|T^{\dagger} - T|i \rangle = \sum_{n} \langle f|T^{\dagger}|n \rangle \langle n|T|i \rangle$
 $2 \operatorname{Im}T(i \to f) = \sum_{n} \langle n|T^{*}|f \rangle \langle n|T|i \rangle$
put $f = i$, forward elastic scatt. \to Optical theorem

$$2 \operatorname{Im} T_{\text{el}}(t=0) = \sum_{n} |T(i \to n)|^2 = \sigma_{\text{tot}}$$

- The sum over all inelastic channels forms a "shadow", which "generates" elastic scattering
 → diffraction → can generalise
- 2. As s increases Im $T_{el}(s,0)$ is the sum over increasing number of positive terms. No such constraint exists for Re T_{el} . $T_{el}(0)$ is predominantly imag. at HE.
- 3. Away from forward dirⁿ, phases in $2ImT_{el} \sim T_{nf}^* T_{ni}$ vary. T_{el}(s,t) rapidly decreases away from t=0.

Eikonal ($\Omega(s,b)$) parametrization

$$2 \operatorname{Im} T_{\text{el}} = \sum_{n} |T(i \to n)|^2 = |T_{\text{el}}|^2 + G_{\text{inel}}$$

best to work in b space, since at high energies the value of b is frozen

$$2 \operatorname{Im} T_{\mathrm{el}}(s, b) = |T_{\mathrm{el}}(s, b)|^{2} + G_{\mathrm{inel}}(s, b)$$

$$\sigma_{\mathrm{tot}} = 2 \int d^{2}b \operatorname{Im} T_{\mathrm{el}}(s, b) = 2 \int d^{2}b (1 - e^{-\Omega/2})$$

$$\sigma_{\mathrm{el}} = \int d^{2}b |T_{\mathrm{el}}(s, b)|^{2} = \int d^{2}b (1 - e^{-\Omega/2})^{2}$$

$$\sigma_{\mathrm{inel}} = \int d^{2}b [2 \operatorname{Im} T_{\mathrm{el}}(s, b) - |T_{\mathrm{el}}(s, b)|^{2}] = \int d^{2}b (1 - e^{-\Omega})$$
with $\operatorname{Re}\Omega \ge 0$. Amp ~ imag. at HE so eikonal Ω is real
Note $e^{-\Omega(s,b)}$ is prob. no inelastic interⁿ occurs at b

At HE the inelastic contribution, G_{inel} , dominates; $\Omega(s, b) \gg 1$. In this so-called "black disk" limit $\operatorname{Im} T_{\mathrm{el}}(s, b) = 1$ Example: black disc of radius R for b < R, $\Omega = \infty$ $(T_{el} = i)$ for b > R, $\Omega = 0$ $(T_{el} = 0)$ $(T_{el} = 0)$ $G_{el} = T R^{2}$ $G_{el} = T R$ Gtot = 2TTR2 Since $\frac{d\sigma_{\rm el}}{dt} = |{\rm Im}T_{\rm el}(s,t)|^2 (1+\rho^2)$ Fourier transform to b-space: $\vec{b} \leftrightarrow \vec{a}_{T}^{-1}$ wide narrow directly determines $\text{Im}T_{\text{el}}(s, b)$ data

So far only discussed elastic diffraction

What about inelastic diffraction ?

Inelastic diffraction is a consequence of internal struct of p

At HE fluctuations of p are frozen. A constituent of p can scatter and destroy coherence of fluctuations

→ inelastic, as well as, elastic diffraction (single diffractive dissociation)

Good-Walker formalism for low-mass diffve dissocⁿ

We write $|p\rangle = \sum a_k |\phi_k\rangle$ where $|\phi_k\rangle$ diagonalise T The $|\phi_k\rangle$ undergo "elastic-type" scatt $\langle \phi_i | T | \phi_k \rangle = 0$ $(j \neq k)$ $|p\rangle \rightarrow \text{diffractive eigenstates } |\phi_k\rangle \rightarrow \text{multichannel eikonal}$ ImT = a Fat where <\$||F|\$k> = Fk Sjk Elastic amp. $\langle p | ImT | p \rangle = \sum |a_{R}|^{2} F_{R} = \langle F \rangle$ average of F over the initial prob. distrib. of diff. estates

$$\frac{dG_{tot}}{d^{2}b} = 2\left\langle p|ImT|p \right\rangle = 2\sum |a_{k}|^{2} F_{k} = 2\left\langle F \right\rangle$$

$$\frac{dG_{el}}{d^{2}b} = |\left\langle p|T|p \right\rangle|^{2} = \left(\sum |a_{k}|^{2} F_{k}\right)^{2} = \left\langle F \right\rangle^{2}$$

$$\frac{dG_{el+SD}}{d^{2}b} = \sum_{k} |\left\langle p_{k}|T|p \right\rangle|^{2} = \sum_{k} |a_{k}|^{2} F_{k}^{2} = \left\langle F^{2} \right\rangle$$
Comments
$$\frac{dG_{eD}}{dG_{eD}} = \left\langle F^{2} \right\rangle = \left\langle F^{2} \right\rangle$$

1. $\frac{dG_{SD}}{d^2b} = \langle F^2 \rangle - \langle F \rangle^2$ absorpt prote of diff estates

If all compts. of incident proton absorbed equally then diffracted superposition = incident one. No inelastic diffraction e.g. Small b: F_k ≃1 (~black disc), so diffr prod ~ zero → diffraction mainly on periphery.

Summary of the s-channel viewpoint

- s-channel unitarity plays a key role.
- Impact parameter representation best.
- Inelastic scattering generates elastic amp.
- Eikonal formalism preserves unitarity.
- Slow approach to black disc limit at small b.
- Multichannel eikonal necessary for proton dissociation.
- Diffraction mainly in the periphery (large b).
- Need t-channel approach for high-mass dissociation.

t-channel picture of Diffraction

see Martin Poghosyan's talk

 $P_{i}(\cos\theta_{t}) \sim (\cos\theta_{t})^{j}$

First, v. brief overview of Regge Poles

partial wave expansion in t-ch: $T(s,t) = \sum_{q} (2l+1) a_{q}(t) P_{q}(cos\theta_{d})$ so exchange of particle of spin j in t-ch t-ch $T(s,t\sim M_{j}^{2}) \sim \frac{P_{j}(cos\theta_{d})}{M_{j}^{2}-t} \rightarrow s^{j} a_{s} s \rightarrow \infty$ s-ch j $cos\theta_{d} = 1 - \frac{s}{2k^{2}}$

whereas from unitarity

$$T(s,t=0) \leq c s \log^2 s$$

so s^j violates unitarity if j > 1.

So we need a way to sum partial-wave series (Sommerfeld-Watson transform see MP's talk) Consider particles lying on a single linear Regge trajectory

HE behaviour dominated by leading (highest) Regge-exch. trajectory

 σ_{tot} (hadron-hadron) \rightarrow const. (actually slightly rising as $s \rightarrow$ infinity)

that is $T(s, t=0) \sim s$ (actually $s^{1.08}$)

(In our discussion on Regge poles we use more usual normalⁿ of T such optical theorem reads $2 \text{Im } T_{el}(s,t=0) = \text{flux } \sigma_{tot} = 2s \sigma_{tot}$)

Implies Regge-pole exchange with $\alpha(0) = 1$ (1.08?)

called the Pomeron

We shall see later that the Pomeron is represented by gluon exchange – we need two gluons to form colourless exchange. But, for the moment, let us consider the Pomeron as a simple (effective) Regge pole

Donnachie-Landshoff type simple Regge pole fit to

 σ_{tot} and $d\sigma_{el}/dt$ for pp, pp, πp , πp , Kp,...

Good description up to Tevatron energies with

$$\alpha_{P}^{eff}(t) \sim 1.08 + 0.25 t$$

$$\alpha_{\rm R}(t) \sim 0.5 + 0.9 t$$

S -0.5

$$PP = P+f+g+a_2+\omega$$

 $PP = P+f-g+a_2-\omega$
 $PP = P+f-g+a_2-\omega$
 $f = P+f-g+a_2-\omega$

$$\sigma_{tot} \sim S^{\alpha(t=0)} / S$$

Impact parameter picture of Regge pole exchange

$$T(s,b) = \int T_{Reg}(s,t) e^{-\lambda \overline{b} \cdot \overline{q}_{T}} d^{2}q_{T}$$
sig.factor *S*
see MP's talk
with $T_{Reg}(s,t) = \beta(0) \eta \left(\frac{s}{s_{o}}\right)^{\alpha(0)-1} e^{Bt} \left\{ \begin{array}{c} \eta = \frac{\lambda}{sin \ Tw}, \ s=1 \\ = \frac{1}{bs \ Tw}, \ s=-1 \\ \end{array} \right\}$
where $B(s) = R_{c}^{2} + \alpha' \left[ln \left(\frac{s}{s_{o}}\right) - \lambda \frac{\pi}{2} \right]$

$$T(s,b) = \frac{\beta(0)\eta}{B} \left(\frac{s}{s_{o}}\right)^{\alpha(0)-1} e^{q} \left(\frac{b^{2}}{4B}\right)$$
Resc is t-dep.
of Regge couplings
 $\beta_{Ac}(t) \beta_{BD}(t)$
Naive 'eff' Pomeron pole: $\alpha(0)-1 \equiv \Delta \sim 0.08$, $\alpha' \sim 0.25$

$$\int \frac{\sqrt{s}}{2} \int \frac{\sqrt{s}}{2}$$

Im T_{Pom}(s,b) exceeds black disc limit, at small b, before LHC energies

To correct for unitarity: eikonalize amplitude i.e. Im $T_{el} = (1 - e^{-\Omega/2})$ $\frac{\Omega}{2} = \frac{\beta}{B} \left(\frac{s}{s}\right)^{\Delta} \exp\left(-\frac{b^2}{4B}\right)$ $\begin{array}{ll} \sim & \stackrel{|S_{T}|}{HE} & exp\left(\Delta \ln\left(\frac{s}{s_{o}}\right) - \frac{b^{2}}{4\alpha' \ln\left(\frac{s}{s_{o}}\right)}\right) \end{array}$ $\gg 1$ for $b^2 < R^2 = 4\alpha' \Delta \ln^2 \frac{S}{S_2}$ → black disc for b < R $B(s) = \mathcal{R}_{c}^{Z} + \alpha' \left[ln \left(\frac{s}{s_{0}} \right) - \lambda \frac{\mathcal{R}}{2} \right]$ $T(s,b) = \frac{\beta(0)\eta}{B} \left(\frac{s}{s_{0}} \right)^{\alpha'(0)-1} \exp\left(-\frac{b^{2}}{4B}\right)$

Recall low M diffraction

Let (p>, IN*> ... i=1, 2,... i=1,2 sufficient two-channel eikonal

p-OEM

Eaik | ØR> diffractive eigenstates only undergo "élastic-type" scatt.

High M diffraction ?

Enlarge no. of 10 k >s?

Even if practical, have the) problem of overlapping particle production for central rapidities

Mueller optical theorem

f= E_c d₃ (AB→CX) = 1/3 Disc_{M²} T(ABC→ ABC) $f = \frac{1}{2s} \left| \begin{array}{c} A \\ A \end{array} \right|^2 = \frac{1}{2s} \sum_{X} \left\{ \begin{array}{c} A \\ A \end{array} \right\} = \frac{1}{s} Disc_{M^2} A + C$

Proof is not trivial. C is an outgoing particle and we are not in the physical region of the elastic process. We need to make a delicate analytical continuation of a many variable 3-body amplitude.

high mass $M^2 \rightarrow \infty, \quad \frac{S}{M^2} \rightarrow \infty$ Triple Regge region diff^{ve} dissocⁿ $f = \frac{1}{S} \beta_{AC}^{i}(t) \beta_{AC}^{j}(t) \left(\frac{S}{M^{2}} \right)^{j(t) + \alpha_{i}(t)} Disc_{M^{2}} \left(\alpha_{i} B \rightarrow \alpha_{j} B \right)$ = $\frac{1}{5}\beta_{ijk}(t)\left(\frac{S}{M^2}\right)^{\alpha_j(t)+\alpha_i(t)}(M^2)^{\alpha_k(0)}$ $\beta_{ijk}(t) = \alpha_{i}(t) + \alpha_{i}(t) - 1 (M^{2})^{\alpha_{k}(0)} - \alpha_{j}(t) - \alpha_{i}(t)$ $f(s,t=0,M^2) \sim \frac{5}{M^2}$ if $x_p(0)=1$ $P \neq F(s,t=0,M^2) \sim s(M^2)^{-3/2}$ if $\alpha_R(0) = 0.5$

So far Pomeron regarded as an exchanged particle. But Pomeron with "intercept" $\Delta = \alpha_P(0) - 1 > 0$ leads to a violation of unitarity as s \rightarrow infinity: $\sigma_{tot} \sim s^{\Delta}$, $\sigma_{SD,DD} \sim s^{2\Delta}$

Multi-Pomeron exch^s suppress this growth and restore s-ch unitarity. Called unitarity/screening/abs corr^{ns}

find
$$g_{3P} = \lambda g_N \qquad \lambda \sim 0.2$$

← why is λ sufficently large, that enh. multi-Pom diagrams important at HE ?

naïve argument without absorptive effects:

so at HE collider energies σ_{SD} (large M) ~ σ_{el} SD is "enhanced" by larger phase space available at HE.

Elastic amp. $T_{el}(s,b)$

bare amp. $\Omega/2$

Im
$$T_{\rm el} = \underbrace{1 - e^{-\Omega/2}}_{\text{(s-ch unitarity)}} = \sum_{n=1}^{\infty} \underbrace{1 \cdots \Omega/2}_{p^*}$$
 (-20%)
Low-mass diffractive dissociation

introduce diff^{ve} estates ϕ_i , ϕ_k (comb^{ns} of p,p^{*},..) which only undergo "elastic" scattering (Good-Walker)

Im
$$T_{ik} = \prod_{k=1}^{i} = 1 - e^{-\Omega_{ik}/2} = \sum \prod_{k=1}^{i} \dots \prod_{k=1}^{i} \Omega_{ik}/2$$
 (-40%)

include high-mass diffractive dissociation

(SD -80%)

$$\Omega_{ik} = \prod_{k}^{i} + \prod_{k}^{i} M + \prod_{k}^{i} M + \prod_{k}^{i} M + \dots$$

So far, considered only triple-Pomeron coupling \rightarrow leads to σ_{tot} which decreases at asymptotic energies.

More reasonable to include $m \rightarrow n$ Pomeron vertices

Data favour

$$g_n^m = g_{3P} (\lambda g_N)^{m+n-2}$$

(this form satisfies AGK cutting rules).

see EPJC71(2011)1617 for more discussion.

Summary of t-channel viewpoint

Regge formalism appropriate for HE (large s) and forward scattering (t~0) --- for "soft" HE hadron inter^{ns}

Constant or increasing $\sigma_{tot}(s)$ with $s \rightarrow \text{Pomeron} \rightarrow$ (a) processes with large rapidity gaps \rightarrow valuable exclusive HE data (b) soft multiparticle production \rightarrow vital to understand the underlying event to rare New Physics processes at the LHC

Triple Regge needed for high-mass dissociation

Importance of absorption (unitarity corrections) \rightarrow multi-Pomeron exchanges

s-channel unitarity and Pomeron exchange

Unitarity relates the Im part of ladder diagrams (disc T = 2 Im T) to cross sections for multiparticle production

The coherence of ψ (beam) is destroyed by interaction of last exch. pt. with target. Leads, not only to inelastic high-multiplicity production, but also, via unitarity, to elastic scattering. Elastic scattering is due to the absorption of an initial coherent component, and originates from the remaining part of ψ (beam) which preserves its coherence

eikonal multi-Pom diagrams: Im T = $1-e^{-\Omega/2} = \Omega/2 - \Omega^2/8 + ...$

- -- Factors 1, 4, 2 come from AGK cutting rules
- -- σ_0 , σ_2 must be positive (real final states)
- -- A multi-Pom diagram describes several different processes

(see MP's talk)

Partonic model of the Pomeron ?

If we had a partonic model of the Pomeron perhaps we could merge "soft" and "hard" high energy pp interactions ?

Could lead to a reliable all-purpose Monte Carlo which describes all aspects on minimum bias data – total, differential elastic X-sections, diffraction, multi-particle production, jet production – in a unified framework ?

Very important to precisely describe the underlying event to the rare New Physics signals at the LHC

Ladder structure of the Pomeron after QCD

Shortly after the discovery of QCD it was proposed that (colourless) two-gluon exch. had properties of Pomeron exch:

vacuum quantum no's, singularity at j=1

- --Later, using the BFKL formalism, in which the t-ch gluons (rather than hadrons) become Reggeized, it was found possible (for sufficiently large k_T) to describe HE (low x) interactions in pQCD.
- --BFKL sum up the leading $(\alpha_s \log 1/x)^n$ contributions and build up the hard/pQCD/BFKL Pomeron.
- --The Pomeron, is not a pole, but a branch cut in the complex angular momentum plane, plus more complicated cuts at HO

"Soft" and "Hard" Pomerons?

A vacuum-exchange object drives soft HE interactions. Not a simple pole, but an enigmatic non-local object. Rising σ_{tot} means multi-Pom diags (with Regge cuts) are necessary to restore unitarity. σ_{tot} , $d\sigma_{el}/dt$ data, described, in a limited energy range, by eff. pole $\alpha_{P}^{eff} = 1.08 + 0.25t$

Sum of ladders of Reggeized gluons with, in LLx BFKL, a singularity which is a cut and not a pole. When HO are included the intercept of the BFKL/hard Pomeron is $\alpha_{\rm P}^{\rm bare}(0) \sim 1.3$ $\Delta = \alpha_{\rm P}(0) - 1 \sim 0.3$

 $\alpha_P^{eff} \sim 1.08 + 0.25 t$ up to Tevatron energies

 $(\sigma_{tot} \sim S^{\Delta})$

α_P^{bare} ~ 1.3 + 0 t with absorptive (multi-Pomeron) effects

$$\Delta = \alpha_{\mathsf{P}}(0) - 1$$

Small-size "BFKL" Pomeron is natural object to continue from "hard" to "soft" (low k_t) domain
"Soft" and "Hard" Pomerons?

A vacuum-exchange object drives soft HE interactions. Not a simple pole, but an enigmatic non-local object. Rising σ_{tot} means multi-Pom diags (with Regge cuts) are necessary to restore unitarity. σ_{tot} , $d\sigma_{el}/dt$ data, described, in a limited energy range, by eff. pole $\alpha_{P}^{eff} = 1.08 + 0.25t$

Sum of ladders of Reggeized gluons with, in LLx BFKL, a singularity which is a cut and not a pole. When HO are included the intercept of the BFKL/hard Pomeron is $\alpha_{\rm P}^{\rm bare}(0) \sim 1.3$ $\Delta = \alpha_{\rm P}(0) - 1 \sim 0.3$

 $\alpha_P^{eff} \sim 1.08 + 0.25 t$ up to Tevatron energies

 $(\sigma_{tot} \sim S^{\Delta})$

α_P^{bare} ~ 1.3 + 0 t with absorptive (multi-Pomeron) effects

Phenomenological hints that $R_{bare Pom} << R_{proton}$ small slope $\alpha'_{bare} \sim 0$ $\alpha'_P \propto 1/\langle k_t^2 \rangle \propto R_{Pom}^2$ success of Additive QM $r_{qq} \sim R_{Pom} \ll R_p$ small size of triple-Pomeron vertexsmall size of Bose-Einstein correlations at low N_{ch}

Pomeron is a parton cascade which develops in ln(1/x) space, and which is not strongly ordered in k_t . However, above evidence indicates

the cascade is compact in b space and so the parton k_t 's are not too low. We may regard the cascade as a hot spot inside the two colliding protons

Probe of hot spots \rightarrow Bose-Einstein correlations

identical pion correlations measure size of their emission region

Partonic structure of "bare" Pomeron

BFKL evolⁿ in rapidity generates ladder

$$\frac{\partial \Omega(y, k_t)}{\partial y} = \bar{\alpha}_s \int d^2 k'_t \ K(k_t, k'_t) \ \Omega(y, k'_t)$$

 $\Omega = \Omega_{ik}(y, k_t, b)$ i k_t k'_t

At each step k_t and b of parton can be be changed – so, in principle, we have 3variable integro-diff. eq. to solve K

Khoze, Martin, Ryskin

- Inclusion of k_t crucial to match soft and hard domains.
 Moreover, embodies less screening for larger k_t comp^{ts}.
- KMR use a simplified form of the kernel K with the main features of BFKL diffusion in log k_t^2 , $\Delta = \alpha_P(0) 1 \sim 0.3$
- b dependence during the evolution is prop' to the Pomeron slope α', which is v.small (α'<0.05 GeV⁻²) -- so ignore.
 Only b dependence comes from the starting evolⁿ distribⁿ

Evolution gives

$$\Omega = \Omega_{ik}(y, k_t, b)$$

How are Multi-Pomeron contrib^{ns} included? Now include rescatt of intermediate partons with the "beam" i and "target" k (KMR) evolve up from y=0 $\frac{\partial \Omega_k(y)}{\partial u} = \bar{\alpha}_s \int d^2 k'_t \exp(-\lambda(\Omega_k(y) + \Omega_i(y'))/2) K(k_t, k'_t) \Omega_k(y)$ evolve down from y'=Y-y=0 =Y-v $\frac{\partial \Omega_i(y')}{\partial u'} = \bar{\alpha}_s \int d^2 k'_t \exp(-\lambda(\Omega_i(y') + \Omega_k(y))/2) K(k_t, k'_t) \Omega_i(y')$

where $\lambda \Omega_{i,k}$ reflects the different opacity of protons felt by intermediate parton, rather the proton-proton opacity $\Omega_{i,k} = \lambda \sim 0.2$

solve iteratively for $\Omega_{ik}(y,k_t,b)$ inclusion of k_t crucial

Note: data prefer $\exp(-\lambda\Omega) \rightarrow [1 - \exp(-\lambda\Omega)] / \lambda\Omega$ Form is consistent with generalisation of AGK cutting rules In principle, knowledge of $\Omega_{ik}(y,k_t,b)$ (and hadronization) allows the description of all soft, semi-hard pp high-energy data: σ_{tot} , $d\sigma_{el}/dt$, $d\sigma_{SD}/dtdM^2$, DD, DPE... LRG survival factors S² (to both eikonal, enhanced rescatt) PDFs and diffractive PDFs at low x and low scales

Indeed, such a model can describe the main features of all the data, in a semi-quantitative way, with just a few physically motivated parameters. (KMR, EPJ C71)

To describe less inclusive quantities we need a Monte Carlo including hadronization, see later.

Can we describe all "soft" HE data

 σ_{tot} , $d\sigma_{el}/dt$, $\sigma_{low M}$, (+ $\sigma_{high M}$) from CERN-ISR \rightarrow Tevatron \rightarrow LHC in terms of a single "effective" pomeron ?

Recall, low-mass dissociation is a consequence of the internal structure of proton. A constituent can scatter & destroy coherence of |p>

Good-Walker: $|p\rangle = \sum a_i |\phi_i\rangle$

where φ_i diagonalize T -- have only "elastic-type" scatt

Usually GW eigenstates assumed independent of t & s KMR (1306.2149) parametrize form factor $F_i(t)$ for each $\phi_{i=1.2}$

• Allows for $B_{el} \sim 10 \text{ GeV}^{-2}$ at CERN-ISR $diff^{ve} dip$ $B_{el} \sim 20 \text{ GeV}^{-2}$ at LHC (7 TeV)

 \rightarrow smaller |t| at LHC, |p> less distorted, so $\sigma_{low M}$ smaller

model 1

Pomeron is a (BFKL) cut, not a pole
iow k_t • high k_t diffusion in log k_t
abs. corr^{ns} between intermediate parton-parton inter^{ns} $\sigma_{abs} \sim 1/k_t^2$, suppress low k_t → mean k_t increases with s $k_{min}^2 \sim s^{0.12}$

(enhanced multi-pom effects introduce dynamical infrared cutoff, see later)

reggeon at ISR \rightarrow 1mb?)

Yes, it is possible to describe all "soft" HE data

 σ_{tot} , $d\sigma_{el}/dt$, $\sigma_{low M}$, (+ $\sigma_{high M}$) from CERN-ISR \rightarrow Tevatron \rightarrow LHC

in terms of a single "effective" pomeron

Energy dep. of σ_{el} , σ_{tot} controlled by intercept and slope of "effective" pomeron trajectory

Diffractive dip and $\sigma_{\text{low M}}$ controlled by properties of GW eigenstates

High-mass dissⁿ driven by multi-pomeron effects

Two alternative definitions of diffraction

 $\equiv X$

E

quan.no. of p

 Diffraction is elastic or quasi-elastic scattering caused, via s-channel unitarity, by the absorption of components of the wave functions of the incoming particles e.g. pp→pp, pp→pX (single proton dissociation, SD),

 $pp \rightarrow XX$ (both protons dissociate, DD) (but problems with high M_x dissociation)

 A diffractive process is characterized by a large rapidity gap (LRG), which is caused by t-channel Pomeron exch. (or, to be more precise, by the exchange corresponding to the rightmost singularity in the complex angular momentum plane with vacuum quantum numbers).
 (but plagued by background which produces rapidity gaps due to Reggeon exchange & fluctuations during hadronization process)

Soft and Hard HE interactions

Soft processes

have momentum transfer squared |t| less ~0.5 GeV², and have $d\sigma/dt \sim e^{-20t}$ at LHC, so v.few large |t| events.

Such processes described by Regge Field Theory. At high energies, Pomeron exch. dominates, and gives both LRGs & multi-pt events.

Hard processes

characterized by a large energy scale, |t| more ~ 2 GeV² – slower, power-like, fall-off with |t|, modulo logs. Here perturbative QCD is appropriate

Hard processes continued

The required non-pert properties of the proton are determined from global analyses of data on DIS and related hard scatt. processes. In this way universal PDFs of the proton are obtained. Factorization theorems exist so PDFs can be taken from one hard process to another.

Hard diffractive processes exist. For example Diffractive DIS where there is a LRG between the p and the hadronizⁿ products of the struck parton. From such data we obtain diffractive PDFs. These are not universal.

To transport them we need to calculate the survival probability, S², of the LRG to soft rescattering, which is process dependent.

Survival prob., S², of rapidity gaps

Examples:

- 1. CDF and HERA diffractive dijet production
- 2. CDF diffractive dijet ratios
- 3. Exclusive J/ψ prodⁿ: pp → p+J/ψ+p Ronan McNulty (γ* Pom →) Joakim Nystrand
 4. Central exclusive prodⁿ: pp → p+A+p with A=Higgs, dijet, γγ, χ_c.. Mike Albrow Antoni Szczurek
- 5. LHC check of S² using W+gap events

Need S² ~ 0.1

A.B. Kaidalov et al. / Physics Letters B 559 (2003)

Dijet production at the Tevatron

 F_{P} is Pomeron "flux factor" ξ is fraction of incoming mom. carried by Pom. $X = \beta \xi$ ND f are the effective PDFs p $R_{\rm ND}^{\rm SD} \equiv \frac{\sigma_{jj}^{\rm SD}}{\sigma_{ij}^{\rm ND}} = \frac{F_P(\xi_{\bar{p}})f_P(\beta)\beta}{f_{\bar{p}}(x_{\bar{p}})x_{\bar{p}}}S_1$ SD DP Need same kinematics. $R_{\rm SD}^{\rm DP} \equiv \frac{\sigma_{jj}^{\rm DF}}{\sigma_{ii}^{\rm SD}} = \frac{F_P(\xi_P) f_P(\beta_1) \beta_1}{f_P(x_P) x_P} \frac{S_2}{S_1}$ Uncertainities cancel. Could study $S(\beta)$ $D = \frac{R_{\rm ND}^{\rm SD}}{R_{\rm SD}^{\rm DP}} = \frac{F_P(\xi_{\bar{p}})f_P(\beta)\beta}{F_P(\xi_P)f_P(\beta_1)\beta_1} \frac{f_p(x_p)x_p}{f_{\bar{p}}(x_{\bar{p}})x_{\bar{p}}} \frac{S_1^2}{S_2}$ (if $\beta = \beta_1$, $= S_1^2 / S_2$ same ξ) $\sim 0.1^2/0.05 = 0.2$

CDF data D = 0.19 + - 0.07

Example 3 Exclusive J/ψ at LHC, $pp \rightarrow p+J/\psi+p$, probe gluon PDF down to $x \sim 10^{-5}$ see the talks by Ronan McNulty **Joakim Nystrand**

Also HERA data on $\gamma^* p \rightarrow J/\psi + p$

Recent JMRT analysis arXiv:1307.7099

From Ronan McNulty (LHCb at 7 TeV)

+ Q₀ contribⁿ

and S² are survival probabilities of LRG

survival factors for pp data at 7 TeV y=2 $S^2(W_+)=0.87$ $S^2(W_-)=0.93$ y=4 $S^2(W_+)=0.74$ $S^2(W_-)=0.95$

survival factor for HERA data S²~1

JMRT arXiv:1307.7099

Actual description of LHCb data in combined fit

need parameterization of gluon from $x \sim 10^{-5}$ to 0.1 to cover data

$$xg(x,\mu^2) = Nx^{-a}(\mu^2)^b \exp\left[\sqrt{16N_c/\beta_0 \ln(1/x) \ln(G)}\right] \quad \text{with} \quad G = \frac{\ln(\mu^2/\Lambda_{\text{QCD}}^2)}{\ln(Q_0^2/\Lambda_{\text{QCD}}^2)}$$

NLO

gluon PDF obtained from combined HERA+LHCb fit to $\gamma^* p \rightarrow J/\psi + p$ data

indicative plot:

pred^{ns} for g (purple) only have expt^{al} data errors!

compared to only central values of global PDFs (blue). Huge errors for $x \sim 10^{-4}$ or less

Promising future

Much more precise exclusive J/ ψ data at 8, 14 TeV Ronan McNulty Expect exclusive Υ data : probe gluon at scale $\mu^2 \sim M^2_{\Upsilon} 4 \sim 23 \text{ GeV}^2$

Pb - Pb b>2R_A~12 fm, but b<1/sqrt(t_{min}) with t_{min}~(xm_p)²/(1-x), so need v.small t_{min}, leading to small W²=xs_{pp} (~HERA).
 So cannot probe v.low x, rather probe nuclear effects on g PDF
 Used incomplete NLO (but main kinematic effects included.

Need confirmation of full NLO (hep-ph/0401131)

 Example 4
 Central exclusive prod: $pp \rightarrow p+A+p$

 p Mike Albow

 $A = Higgs, dijet, \gamma\gamma, \chi_c, \dots$

dominant diagram $p \xrightarrow{q_1} p$ $p(\overline{p})$

$$\mathcal{M}(\bar{p}p \to \bar{p} + A + p) \sim S^2 \int \frac{d^2 Q_t}{Q_t^4} f_g f_g$$

tho' pred^{ns} become more unreliable as M_A becomes smaller, and infrared region not so suppressed by Sudakov factor

$$T = \exp\left(-\int_{Q_t^2}^{M_A^2} dk_t^2 \dots\right)$$

Double-diff^{ve} exclusive Higgs production at the LHC

Khoze, Martin, Ryskin

The price for rapidity gaps ? \rightarrow

$$\frac{pp \rightarrow p + H + p}{Survival prob. of rap. gaps}$$

$$W = S^2 T^2$$

$$\frac{N}{rescatt} = \frac{N}{rescatt} = \frac{N}{rescatt}$$

..

$$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ &$$

Also have to consider $S^2_{enhanced}$ for pp \rightarrow p + H +p

soft-hard factorizⁿ

eikonal rescatt: between protons enhanced rescatt: involving intermediate partons

conservedbroken

The new soft analysis, with Pomeron q_t structure, enables S^2_{enh} to be calculated (see KMR, 0812.2413)

- 1. f_g's from HERA data already include rescatt. of intermediate partons with parent proton
- 2. Usually take $p_t=0$ and integrate with $exp(-Bp_t^2)$. S²/B² enters (where 1/B = $<p_t^2>$). But enh. abs. changes p_t^2 behaviour from exp., so quote S² $<p_t^2>^2$

$$|=\sim 0.015$$
 (for B=4 GeV⁻²)

 $<S_{tot}^{2}><p_{t}^{2}>^{2} = 0.0010 \text{ GeV}^{4}$

see 0812.2413

3. See KMR 1306.2149 for latest S²(Higgs)

$$\eta_W = 2.3(-2.3) \implies \xi \sim 0.1(0.001)$$

W+gaps has S² large, as large b_t for γ exch (small opacity)

Z+gaps has b_t more like excl. Higgs

σ~0.2pb for $\Delta \eta_i$ >3 and E_T(b)>50GeV but to avoid QCD bb backgd use Z→I⁺I⁻

Other examples in EPJ**C55**(2008)363

use track counting veto

Recall, that besides LRGs, the Pomeron also describes "soft" multi-particle production.

Constant or increasing $\sigma_{tot}(s)$ with $s \rightarrow Pomeron \rightarrow$ (a) processes with large rapidity gaps \rightarrow valuable exclusive HE data (b) soft multiparticle production \rightarrow vital to understand the underlying event to rare New Physics processes at the LHC

Further, recall that the "hard" Pomeron (based on BFKL), with abs. corr^{ns}, continues smoothly into "soft" Pomeron

"Soft" and "Hard" Pomerons?

A vacuum-exchange object drives soft HE interactions. Not a simple pole, but an enigmatic non-local object. Rising σ_{tot} means multi-Pom diags (with Regge cuts) are necessary to restore unitarity. σ_{tot} , $d\sigma_{el}/dt$ data, described, in a limited energy range, by eff. pole $\alpha_{P}^{eff} = 1.08 + 0.25t$

Sum of ladders of Reggeized gluons with, in LLx BFKL, a singularity which is a cut and not a pole. When HO are included the intercept of the BFKL/hard Pomeron is $\alpha_{\rm P}^{\rm bare}(0) \sim 1.3$ $\Delta = \alpha_{\rm P}(0) - 1 \sim 0.3$

 $\alpha_P^{eff} \sim 1.08 + 0.25 t$ up to Tevatron energies

 $(\sigma_{tot} \sim S^{\Delta})$

α_P^{bare} ~ 1.3 + 0 t with absorptive (multi-Pomeron) effects High-energy pp interactions

soft

Reggeon Field Theory with phenomenological soft Pomeron

pQCD partonic approach

hard

smooth transition using QCD / "BFKL" / hard Pomeron

There exists only one Pomeron, which makes a smooth transition from the hard to the soft regime

Could lead to a reliable **all-purpose Monte Carlo** which describes all aspects on minimum bias data – total, diff. elastic X-sections, diffraction, multi-particle production, jet production –

in a unified framework ?

(b) DGLAP-based MC

Existing all-purpose MCs describe inclusive spectra with hard partonparton interaction in central region, with secondaries from backward evolⁿ.

Infrared cutoff k_{min} ~3 GeV at LHC(7 TeV) compared to cutoff k_{min} ~2.15 GeV at Tevatron.

Understood in pQCD: in relevant low x region, prob of rescatt. large, corresponding $abs^{ve} corr^n$, $\sigma_{abs} \sim 1/k_t^2$, suppress low k_t .

Model \rightarrow d σ /dy ~ s^{0.2} like LHC data for 0.9 to 7 TeV

Can conclude from the LHC data:

The $< p_T >$ of hadrons measured by ATLAS, CMS, ALICE is smaller than that expected from the **DGLAP-based** MC's (which have strong-ordering in k_{T} going from the protons to the central region) tuned to lower energy data. After this tuning the MC's, find smaller $< p_T >$ and larger particle density dN/dy at LHC. This indicates the need for a **BFKL-based** MC (with multi-Pomeron absorptive corrections), where we have diffusion in log k_{T} and a growth of particle density as we go to large initial energy, that is smaller x.

Existing "all purpose" (DGLAP) Monte Carlos split eikonal

$$\Omega(s,b) = \Omega_{soft} + \Omega_{hard(pQCD)}$$

Seek MC that describes all aspects of minimum bias -- total, differential elastic Xsections, diffraction, jet prod... in a unified framework; capable of modelling exclusive final states.

SHERPA Monte Carlo based on KMR framework

"SHRIMPS" MC = Soft-Hard Reactions involving Multi-Pomeron Scatt.

Krauss, Hoeth, Zapp et al

OUTLINE of SHRiMPS:

Solve coupled evol eqs. in y to generate $\Omega(y,b)$, specifying boundary conditions of GW eigenstates. Eigenstates give elastic, quasi-elastic scatt.

Select no. of ladders exchanged (according to Poisson distribution with parameter $\Omega_{ik}(b)$) to simulate inelastic state

Incoming protons dissolved into val. q, diquark and gluons

For each pair we check prob. to exchange next ladder

Gluon emissions from ladder according to Markov chain, ordered in y, with pseudo Sudakov form factor

t-ch propagators are reggeized gluon in either colour singlets or octets. Prob(singlet) = $P_1 = (1 - \exp(-\delta\Omega/2))^2$

Each gluon emission leads to two new propagators--allowed combinations P_1P_8 , P_8P_1 , P_8P_8 -----singlet propagators give rise to rapidity gaps associated with elastic scatt.

Also rescatt. can give inelastic interaction of secondaries, producing new ladders with Poisson prob. $exp(-\delta\Omega)(\delta\Omega)^n/n!$

single gluon emission iterated until active interval is colour singlet or no further emissions are kinematically allowed in rapidity interval

Finally usual hadronization, plus hadron decays, plus QED, to produce final scatter of observed particles.

A few typical plots from SHRiMPS Monte Carlo (in SHERPA) \rightarrow

Conclusion on "SHRiMPS" Monte Carlo

Seek MC that describes all aspects of minimum bias -- total, differential elastic Xsections, diffraction, jet prod... in a unified framework; capable of modelling exclusive final states.

Incorporate the KMR model in SHERPA MC framework Krauss, Hoeth, Zapp + KMR

KMR model is based on bare QCD Pomeron, with absorptive multi-Pomeron rescattering corrections → "SHRIMPS" MC

= Soft-Hard Reactions involving Multi-Pomeron Scatt.

Special properties of "SHRiMPS" Monte Carlo

- Based on partonic model of Pomeron, which enables BFKL-like structure to be continued into soft domain, increasingly subject to absorptive corrections
- Stronger absorption of low k_T partons automatically gives effective infrared cutoff k_{min} which increases with collider energy
 (Existing general purpose DGLAP-based MCs have external parameter giving an energy dependent cutoff. "BFKL-like diffusion in lnk_T + absorption of low k_T" can be approximately mimicked by DGLAP)
- Consistently includes low-mass diffraction, via 2-channel eikonal.

Special properties of "SHRiMPS" MC continued

• Consistent inclusion of (absorptive) multi-Pomeron effects.

A multi-Pomeron diagram simultaneously describes several different processes depending on which Pomeron ladders are cut

- (i) multiparticle production results from "cut" ladders
- (ii) processes with rapidity gaps (no cut ladders in gap)
- Offers the possibility of a reliable description of the underlying event to New Physics "hard" processes.

Some review-type references

V.Barone, E.Predazzi, High Energy Particle Diffraction, Springer(2002)
P.D.B.Collins, A.D.Martin, Hadron interactions, Adam Hilger(1984)
E.A. De Wolf, Diffractive scattering, hep-ph/0203074
A. Hebecker, Phys.Repts, 331(2000)
A.B. Kaidalov, Diffractive prod. mechanisms, Phys.Repts,50(1979)117
M.Ryskin et al., Soft Physics at the LHC, J.Phys.G36(2009)093001
G. Watt, IPPP, Ph.D. thesis (2004)
M.Wusthoff, A.D.Martin, J.Phys.G25(1999)R309
KMR: EPJC 71, 1617 (2011); arXiv:1102.2844; Frascati Phys.Ser. 54(2012)162;arXiv:1202.4966

These lecture notes can be found on http://www.ippp.dur.ac.uk/~martin/Heidel13.pdf