
An introduction to Regge Field Theory  

Wilhelm und Else Heraeus Physics Summer School 
“Diffractive and electromagnetic processes at high energies” 
Heidelberg, Germany, September 2-6, 2013 

Martin Poghosyan 
(CERN) 



8/25/13	   Mar+n	  Poghosyan	   2	  

lnQ2 

ln1/x 

DGLAP 

B
FK

L pQ
C

D
 

so
ft 

Regge 

                       Map of High Energy Physics	  



                       The Scattering Matrix 

The transition of  a closed system of  particles from an initial state |k  > to a final 
state |f  > is described in quantum theory by the S matrix:   

|f  > = S  |k  >

The matrix elements of  the S matrix:	  

S&k=  <f  |S  |k  > [(|f  >)+	  =	  <f  |  -‐  Hermitian  conjugate]	  

Can be represented in the form	  

S&k  =  δ&k  +  i  (2π)4δ(4)(Pi  −Pk)T&k

δ&k  =  1  if  the state does  
not change (|f  > =  |k  >). 
No interaction  

conservation of  
energy and 
momentum	  

T&k  is called the transition 
(scattering) amplitude 
from the state |k  > to the 
state |f  >	  

T&k    (S&k)  is a function of  4-momentum and polarization of  particles 
(and contains γ-matrixes in case of  fermions).	  
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                       The Scattering Amplitude 
For spinless particles, T&k  is a function of  the relativistically invariant variables formed 
from the 4-momentum of  the particles.	  
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T&k(P1,  P2,  P3,  P4  )	   Pi={Ei,  pi}	  

4×4	  =	  16	  variables	  

Not	  all	  16	  variables	  are	  independent	  

Energy-momentum conservation: P4  =P1+P2  −P3	  

6	  invariants	  can	  be	  formed	  with	  P1,  P2  and  P3  :  P12,  P22,  P32,  (P1P2),  (P1P3),  (P2P3)  	  
Pi2  =  mi

2  (i  =1,  2,  3,  4  )	  
  P42  =(P1+P2  −P3)2  =  P12  +  P22  +  P32  +  2(P1P2)  -‐  2(P1P3)  -‐2(P2P3)  =  m4

2  	  
	  

T&k  is a function of  2 variables for binary reactions with spinless particles 

s	  =(P1+P2)2  =  (P3+P4)2


t	  =(P1−P3)2  =  (P2−P4)2
	  

u=(P1−P4)2  =  (P2−P3)2  	  	  	  

s  +  t  +  u  =	  m1
2+m2

2+m3
2+m4

2
[1+3  → 2+4  ]
[1+4  → 2+3  ]

Mandelstam variables 

T&k  =  T&k(s,  t)	  
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                       Crossing symmetry 

In quantum field theory, absorption of  a particle with 4-momentum –p and energy E<-‐m 
corresponds to emission of  an antiparticle with 4-momentum p and positive energy E  >  m.   

Since T&k(s,  t)  is a function of  kinematical invariants (not on the sign of  Pi), the same 
function describes the following reactions: 

1  →  2+  3+4  for  unstable  particle  (P1,  P3,  P4  >  0  and    P2  <  0)  

1+2  → 3+4  for  P1,  P2,  P3,  P4  >  0                                                            s  –  channel  (s>  4m2,      t,  u<0  )  

  1+3  → 2+4    for  P1,  P4  >  0  and    P2,  P3  <  0                        t  –  channel  (t>  4m2,        s,  u<0  )        

1+4  → 2+3    for  P1,  P3  >  0  and    P2,  P4  <  0                        u  –  channel  (u>  4m2,      s,  t<0  )          
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4	  

s	  

t	  
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3	  

2	  

4	  
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s	  
1	  
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Unitarity 
From the conservation of  the probability norm in interaction processes: 

S+S  =  1	  
The sum of  probabilities of  all processes which 
are possible at a given energy is equal to unity 

i Tfk
∗ −Tfk#

$
%
&=

d 3pl
2El (2π )

3
TnkTfn

* 2π( )
4
δ (4) (Pk − Pq

q=1

n

∑ )
l=1

n
∏∫

n
∑

Tnk  −  the amplitude for a transition from the state |k>  to the state |n>  with n particles  

∫
n
∑ −  means integration over phase-space for each particle in the channel with n 

particles sum over all channels. 

�	  
�	  
�	  

1	  
2	  
3	  

n	  

If |f  >	  =	  |k  >:	  
Optical theorem 

2ImT (s,0) =
d 3pl

2El (2π )
3
Tnk

2
2π( )

4
δ (4) (Pk − Pq

q=1

n

∑ ) = 4 jσ tot (s)l=1

n
∏∫

n
∑

a	  

b	  

j = pa pb( )
2
−ma

2mb
2

dσ el

dt
=
T (s,t)

2

64π pa
*2s

σ tot (s) =
ImT (s,0)
2pa

* s
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Kinematics of binary reactions 

1	  

2	  

3	  

4	  

Let’s assume m1  =  m2  =  m3  =  m4  =  m  

In CM system: p1  +  p2  =  p3  +  p4  =  0  

Ei =
1
2
ss	  

t	  

pi
2 =
s
4
−m2 i =1,2,3,4

t = −( p1 − p3)
2 = −2 p1

2 (1− cosθs )

cosθs =1+
2t

s− 4m2
= − 1+ u

s− 4m2
"

#
$

%

&
'

−4p1
2 ≤ t ≤ 0

T(s,t)=T(s,  cosθs  )	  

dσ el

dΩ
=
T (s,t)
8π s

2
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Partial wave expansion 	  

f (s,cosθ ) = 1

8π s
T (s,t) = 1

p*
(2l +1) fl (s)Pl (cosθ )

l=0

∞

∑
Represented in the form of  a series in the 
partial-wave amplitudes fl(t), which 
characterize scattering in the state with 
relative orbital angular momentum l.  

dzPl (z)Pl ' (z) =
2δll '
2l +1−1

1
∫ +	  unitarity	  

Im fl (s) = fl (s)
2
+ fl

N (s,τ N )
2
d∫ τ N

n
∑ Im fl (s) ≥ fl (s)

2
Im fl (s) ≤1

Froissart	  bound	  

(assumes	  unitarity,	  analy+city,	  	  short-‐range	  character	  of	  strong	  interac+ons)	  

For	  s	  →	  ∞	  	  the contribution comes from terms with   leff ≤C s ln s

σ tot (s) =
ImT (s,0)
2pa

* s
=
4π
pa
*2

(2l +1) fl (s) ≤
l=0

leff

∑ 4π
pa
*2
leff
2 ≈C ' ln2 s

σ tot (s) ≤C ' ln
2 s

Pl z( ) =
1
2l l!

d l

dz( )
l
z2 −1( )

l
– Legendre polynomial 



8/25/13	   Mar+n	  Poghosyan	   9	  

Pomeranchuk theorem	  

ImTab(s,t = 0) = sσ tot (ab)

ImTab(u,t = 0) = uσ tot (ab )

1
ln s

ReT (s,0)
ImT (s,0)

→ 0If  T is not an oscillating function and  at s →	  ∞	  

σ tot (ab) =σ tot (ab ) at s→∞

Pomeranchuk theorem may be violated. See O. Nachtmann’s talk.  
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t-channel exchange picture	  

a	  

b	  

a	  

b

s	  

a	  

b	  

a	  

b

t	  

fl (t) =
r(t)
l −α(t)

Suppose the fl(t)  has 
a singularity of  form 

1
2i
fl (t)− fl

*(t)"
#

$
% ~ fl (t) fl

*(t)

fl (t)− fl
*(t) = r

l −α(t)
−

r*

l −α*(t)
=
r l −α*(t)( )− r* l −α(t)( )
l −α(t)( ) l −α*(t)( )

~ 2i rr*

l −α(t)( ) l −α*(t)( )

r = r* Imα(t) ~ r ≠ 0 No  poles  in  the  real  axis  in  the  l  
plane  for  t  >  4m2
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Resonances	  

Assume  for  some t = tR ≡MR
2 > 4m2 ,

flR (t) ≈
r(t1)

lR −[lR + i Imα(tR )+ #α (tR )(t − tR )]
= −

Imα(t1)
#α (tR )(t − tR )+ i Imα(tR )

=
Imα(tR ) / #α (tR )

tR − t − i Imα(tR ) / #α (tR )

α(t) ≈ lR + i Imα(tR )+ "α (tR )(t − tR )

Taylor  expansion  

flR (t) ~
1

MR
2 + t − iMRΓ

Imα(tR ) / !α (tR ) ≡MRΓ

Breit-‐Wigner	  	  

Regge pole in the physical region of  the t-‐channel (t  >4m2  ) corresponds  to a 
Briet-Wigner resonance with                  (=spin of  R)  

Reα(tR ) = lR

Reα(t1) = lR
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Chew-‐Frautschi	  plot	  

Regge pole gives a generalization of  a particle exchange in the t-channel. It 
corresponds to an exchange in the t-channel by a state of  noninteger spin α(t) 
(reggeon trajectory), which coincides with particles of  spin J for t  =MJ

2
 

Reggeon trajectory	  

Regge	  trajectories	  are	  almost	  straight	  lines	  and	  
in	  standard	  Regge	  theory	  they	  are	  
parameterized	  by	  	  

€ 

α t( ) = α0 + # α ⋅t
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Imα

ReαC0 C1 C2 C3 C4
Imα

Reα

C
T (t,s) = 1

2i
e−iπα (2α +1) f (α,t)Pα (cosθt )

sin(πα)
dα

C∫

Partial wave expansion in t-channel and 
Sommerfeld-Watson transformation  

T (t,s) =T (t,cosθt ) = (2l +1) fl (t)Pl (cosθt )
l=0

∞

∑

(2l +1) fl (t)Pl (cosθt ) =
1
2i

(−1)α (2α +1) f (α,t)Pα (cosθt )
sin πα( )

dα
Cl
∫

F (a) = 1
2πi

F (z)
z − a

dz
C∫

Cauchy’s integral theorem 

sin(πα) ≈ sin(π l)+π (α − l)cos(π l) = π (−1)l (α − l)

Imα

Reα

C

T (t,s) = 1
2i

1+σe−iπα( )(2α +1) f σ (α,t)Pα (cosθt )
2sin(πα)

dα
σ=±1
∑C∫

T (t,s) = ησ αi
σ (t)( )riσ (t)Pαiσ (t ) (cosθt )

poles
∑

σ=±1
∑

ησ (α) = −
σ + e−iπα

sin(πα) signature factor 

cosθt =1+
2s

t − 4m2
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Regge pole exchange amplitude 

“Physical” region in the t  −channel corresponds to t  >  4m2,  s  <  0.  Analytically continue 
the amplitude to  s  >  4m2,  t  <  0  (s  −channel).  

For s  >>  4m2  >  |t  |,  cosθt ~
s
4m2

>>1

Pl (z) ~ z
l for  z  >>  1

T (t,s) = ησ αi
σ (t)( )γ iσ (t) ss0

!

"
#

$

%
&

αi
σ (t )

poles
∑

σ=±1
∑

s0	  is	  a	  constant	  scale	  factor,	  usually	  chosen	  to	  be	  	  s0  =  1	  GeV2.	  

a	  

b	  

a	  

b

a	   a	  

b	   b

Real particle 
(with mass M 
and fixed spin) 

Reggeon 
(with running 
mass t	  and 
spin α(t))	  

σ tot (s) =
1
s
ImT (s,0) ~ sα (0)−1
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Duality 

=  Σ =  Σresonances 
reggeons 

res.	  
R	  
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a	   a	  

b	   b

Factorization 

What is the meaning of	  γ(t)?	  
 
In fact, all information about incoming and outgoing 
particles (baryon number, strangeness, etc.) are absorbed in 
γ(t) and it does not depend on s.  
 
γ(t) should be related to Reggeon-hadron interaction vertex! 
 
 

One can assume the initial state does not know anything about the final state: in the 
cross-channel the initial particles first transform into an intermediate state, which then 
gets converted into the final particles, with the amplitude independent of  the properties 
of  the initial state.  

α(t)	  

γ(t)  =  gaa(t)gbb(t)	  

It is not possible to predict the explicit form of  gaa(t)  from the analytical properties of  the 
matrix element (model dependent). 
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Regge pole approximation 

At fixed t, with s >> t 

•   Amplitude for a process governed by the exchange of  a trajectory α(t) is 

•  No prediction for t dependence 

•  Elastic cross section 

•  Total cross section considering the optical theorem 

T (s,t)∝ s / s0( )
α (t )

dσ el

dt
≈
1
s2
T (s,t)

2
∝ s2(α (t )−1)

σ tot ≈
1
s
ImT (s,0)∝ sα (0)−1
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Reggeons 

2 GeV2m
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€ 

αi (t) = αi (0)+ # α i ⋅t, i = f ,ρ,ω.

€ 

α f (0) = 0.703± 0.023 # α f = 0.797± 0.014GeV −2

αρ (0) = 0.522± 0.009 # α ρ = 0.809± 0.015GeV −2

αω (0) = 0.435± 0.033 # α ω = 0.923± 0.054GeV −2

σ tot ∝
s
s0

"

#
$

%

&
'

αi (0)−1

σ tot → 0 at s→∞
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Experiment:	   σ tot → 0 at s→∞

Unexpected Reggeon? 

€ 

σ tot ~
s
s0

# 

$ 
% 

& 

' 
( 

α i (0)−1

An	  object	  with	  	  α(0)=	  1+	  Δ	  >1	  is	  needed	  

pp
 a

n
d
 p

p 
to

ta
l 
cr
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s-

se
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n
 (

m
b
) 
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Donnachie	  and	  Landshoff	  (1992)	  

σ tot = As
0.0808

grows	  as	  a	  power	  func+on	  of	  s	  	  

	  Unitarity	  requires	  that	  the	  total	  cross	  
sec+on	  at	  very	  high	  energies	  should	  not	  
grow	  faster	  than	  ln2s	  (Froissart	  bound).	  	  
	  

F2 (x,Q
2 ) = f1(Q

2 )x−0.08 + f2 (Q
2 )x−0.42

For	  describing	  	  DIS	  data	  
F2 (x,Q

2 ) = f (Q2 )xΔ(Q
2 )

(DL	  1998)	  

(CKMT	  1992)	  

soi	  Pomeron	   hard	  Pomeron	  

Pomeron 
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It is usually assumed that the 
Pomeron in QCD is related to 
gluonic exchanges in the  
t–channel. 
 
 
Δeff determined from fits to 
data are in general different 
from Δ. 
 

DIFFRACTION: 
In HEP any process involving 
Pomeron exchange 

Pomeron 

See talks by  
L. Jenkovszky 
A. Martin 
O. Nachtmann 
W. Schäfer 
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A simple parameterization of Regge residues 

gaa (t) = gaa exp Raa
2 t{ }

α(t) =α0 + !α t

Raa	  –	  Regge radius of  hadron a

T (s,t) = gaagbbη(α(0))exp λt{ } s
s0

!

"
#

$

%
&

α0

ησ (α) = −
σ + e−iπα

sin(πα)
= e−iπα /2

−1
sin(πα / 2)

for σ = +1

i
cos(πα / 2)

for σ = −1

"

#

$
$

%

$
$

λ ≡ Raa
2 + Rbb

2 + !α ln s s0( )− iπ 2( )

Impact parameter representation 

fab(s,b) ~ d 2q
⊥
exp −ibq

⊥{ }T (s,q⊥2 )∫ ~
s s0( )

α0−1

λ
exp −

b2

4λ

$
%
&

'
(
)

b 2 = 2 | λ |≈ 2 Ra
2 + Rb

2 + !α ln s s0( )
Radius of  interaction increases 
with increasing s

dσ
dt
~ s
s0

!

"
#

$

%
&

2α−2

× exp −2 Raa
2 + Rbb

2 + !α ln s s0( )( ) | t |{ }
Increases with increasing s. Diffraction peak shrinkage. 
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∑ ℑ=∗

c aaacac mTTT 2

Analogous to the optical theorem, Muller’s theorem relates the inclusive cross-section for 
the reaction h1+h2→c+X to the forward scattering amplitude of the three-body hadronic 
process                                . 

€ 

∫Σ	   c	  

h1	  

h2	  

2	  
c	  

h1	  

h2	  

h1	  

h2	  

c	   c	   c	  
double	  Regge	  limit	  

triple	  Regge	  limit	  

€ 

h1 + h2 + c → h1 + h2 + c 

Unitarity and two-body & three-body  reactions 
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(PP)P ∝
s2Δ

M 2( )
1+Δ

(PP)R ∝
s2Δ

M 2( )
1.5+2Δ

(RR)P ∝
M 2( )

Δ

s

(RR)R ∝
1

s M 2( )
0.5

(ππ )P ∝
M 2( )

1+Δ

s2

(ππ )R ∝
M 2( )

0.5

s2

(PR)P ∝
sΔ−0.5

M 2( )
0.5

(PR)R ∝
sΔ−0.5

M 2( )
1+Δ

dσ SD

dM 2dt
=
s0
s

!

"
#

$

%
&

2

Gijk t( )
s
M 2

!

"
#

$

%
&

i , j ,k
∑

αi (t )+α j (t ) M 2

s0

!

"
#

$

%
&

αk (0)

Gijk t( ) = 4π gaaαi t( )gaa
α j t( )gbbαk 0( )rαiα j

αk t( )η αi t( )( )η* α j t( )( )

rαiα j
αk (t)

αk (0)

α j (t)αi (t)

a 
a a 

a 

b b 

Triple-Regge diagram 

See talks by  
A. Martin 
L. Jenkovszky 
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2 Im 

2 

2 Im 

2 

2 Im 

2 

Double diffraction 

Central production 

Double gap topology  
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t = τ
4

t = 0 t = τ
4
+
τ
8 t = τ

t = τ
2
=
p
2m2

n

p1 =
p
2 p2 =

p
22

pn =
p
2n

s-channel picture of Reggeons 

Multiperipheral fluctuation  
development time: 

τ =
p
m2

Slow partons interact:   pn  ≈  m

n ~ ln p ~ ln s

Random walk in b space: b 2 ~ n ~ ln s

Summation of  mutiperipheral diagrams leads to regge behavior   

Reggeon is a non-local object! 

Ladder 
diagram α(t)	  

High-‐energy	  hadronic	  interac+ons	  are	  essen+ally	  non-‐local.	  	  

See A. Martin’s talk 
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Space-time picture of high-energy hh interactions 

AFS	  (successive)	  	   Mandelstam	  (simultaneous)	  

σ → 0 at s→∞

τ  ~  E  
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Regge poles in QCD 

1/N-expansion is a useful non-perturbative method to study  soft interaction dynamics. 
Nc>> 1         ( t’Hooft) 
Nc ≈ Nf >>1   (Veneziano) 
All diagrams are classified according to their topology. Amplitudes are expanded in 1/N 
(1/N2). The first term corresponds to planar diagrams. 
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Pomeron in QCD 
Pomeron is usually related to gluonic exchange in the t-channel. 
From the point of  view of  1/N-expansion Pomeron corresponds to cylinder-type diagrams.  

€ 

αP

Cutting of the cylindrical diagram in the s-channel 

Configuration of the 
final state particles. 
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…	   …	  
…	  
…	  P P P 

Gribov-1986	  

…	  

Reggeon Field Theory 

At high energies (parton densities) the interaction between Pomerons starts to play an 
important role. The Regge theory becomes unsafe. Interaction vertices (multi-Pomeron and  
Pomeron-hadron) are not known theoretically. 

models based on RFT: 
Kaidalov-Ponomarev-Ter-Martirosyan, Khoze-Martin-Ryskin, Gotsman-Levin-Maor, 
Ostapchenko, L. Jenkovszky et al., Kaidalov-Poghosyan, … 
 
Main difference in implementing the GW mechanism, in used sets of  diagrams,  and  in 
parameterizing interaction vertices (+AGK).    
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R + R P + R …P PP P P 

iM (n)(s, t) =
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d2qi�
⇥
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C(n)({qi�})�
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qi�

⌅

Regge-poles are not the only singularities of  the amplitude. There are also branch points which 
correspond to the exchange of  several Reggeons. A Regge pole can be interpreted as 
corresponding to a single scattering. Regge cuts – multiple scatterings of  hardons’ constituents.    

Gribov’s reggeon calculus 

M (1) (s,t) = T (s,t)
8π s

= γη α(0)( )eλt ss0
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R + R P + R …P PP P P 
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ΔnP  =  nΔP    → for ΔP  >  0    all nP exchanges should be taken into account 

Multi-Pomeron exchange 
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…	  +	  	  …	  	  +	  +	  

…	  +	   +	  	  …	  	  +	  

…	  +	  	  …	  	  +	  +	  

How to calculate the cross-section of a given process? 
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• 	  If  the Pomeron is not cut entirely, its contribution is suppressed exponentially. 
•  No particle production from interaction vertices 
•  All the vertices for various cuts are the same and real. 
 
o  There is one cut-plane which separates the initial and final states 
	  
o 	  Each cut-pomeron obtains an extra factor of  (-2) due to the discontinuity of  the  
    pomeron amplitude (for a cut Pomeron replace the factor  iM(1)(s,t)	  by	  2ImM(1)(s,t) ) 
	  
o 	  Each un-cut pomeron obtains an extra factor of  2 since it can be placed on both  
    sides of  the cut-plane (the factors	  iM(1)(s,t)	  for the Pomerons to the right of  the cut  
    are placed by the complex-conjugate values) 
	  	  	  	  

AGK cutting rules allow: 
•   to relate to each other the different s-channel discontinuities of  a given graph 
•   to calculate the contribution of  each graph in the total cross-section. 

Abramovsky-Gribov-Kancheli cutting rules 
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AGK for PP exchange 

Diffractive cutting (between Pomerons)  

Cutting through one of  Pomerons 

Cutting both Pomerons 
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386 P a r t i c l e d e n s i t y fl u c t u a t i o n s a n d R F T

n

n

n
_ _

2n

s

Fig. 15.1 Topological cross section distribution corresponding to single
pomeron (solid line) and multiplicity fluctuation pattern induced by two-
pomeron branching (dashed).

pole; it may be negative (though not very). The relation 2 : 8 : 4 expresses
the share of different final states contained in the imaginary part.

This simple example illustrates an important pattern of fluctuations in
the multiplicity distribution induced by branchings. The cross section in
the main region, n ∼ n̄, d e c r e a s e s (−8) to make room for the new particle
production processes (characterized by the shares +2 and +4) as shown
in Fig. 15.1. For the pomeron pole we have |Re f | # Im f , so that

2 Ims F $ N2(2 − 8 + 4)(Im f)2 = −2N2(Im f)2. (15.7)

The overall effect of the branching is n e g a t i v e ; the total cross section
decreases. This is screening.

This is an example of how we can sort out the content of Ims F of
arbitrary multi-reggeon diagrams. It is important that we did so according
to the cuts of f , not touching N . This means that the we have carried
the procedure in a universal way, and did not need to worry about the
(potentially complicated) internal structure of the vertices.

1 5 . 1 . 3 U n i v e r s a l i t y o f t h e v e r t e x f u n c t i o n N

In the derivation we implied only one (but essential) thing, namely that
the vertex block N remains the same in all cases (15.5). I would prove
that the expression (15.6) is correct if N , indeed, does not depend on the
way we cut the diagram.

       is negative, it is a correction to the pole diagram. 
Reducing it opens a room for new production processes   
 

€ 

σ1
(2)

AGK and multiparticle production 

+	  

+	  

Npart*(-‐4) 2Npart*(+2)

0	  
(AGK	  cancella+on)	  
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With	  account	  of	  enhanced	  diagrams	  only	  Mueller-‐Kancheli	  type	  diagrams	  survive	  

The	  central	  part	  of	  the	  inclusive	  spectrum	  is	  determined	  by	  Mueller-‐Kancheli	  diagram:	  
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Schwimmer	  model:	  
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P 

€ 

Δeff = Δ− 4πGPPP

€ 

Δeff ≈ 0.12

Kaidalov et al., Sov. J. N.P. 44 
Dubovikov  et al., Nucl. Phys. B123 
Kopelovich  and Lapidus,  Sov. Phys. JETP 44 
Dubovikov and  Ter-Martirosyan, Nucl. Phys. B124 
Kaidalov et al., Sov. J. N.P. 44 

First estimate of the influence of enhanced graphs 
on physical observables 

Δ ≈ 0.2
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First estimate of the influence of enhanced graphs 
on physical observables 
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Number of  chains increases with energy è no KNO scaling at high energies  

Kaidalov	  and	  Ter-‐Mar+rosyan	  1982	  

KNO-scaling violation was predicted 
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p
p

p
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S 2 =
|M (s,b) |∫

2
P(s,b)d 2b

|M (s,b) |∫
2
d 2b

M(s,b) - amplitude (in b-space) of  the particular process 
 

P(s,b) - probability that no inelastic interaction occurs 
             between scattered hadrons 526 A.B. Kaidalov et al.: Probabilities of rapidity gaps in high energy interactions

Fig. 4. The predictions for diffractive dijet production at the
Tevatron, obtained from two alternative sets of ‘HERA’ diffrac-
tive parton distributions I and II (of Fig. 3), compared with the
CDF data [17]. The upper two curves correspond to the neglect
of rescattering corrections, whereas the lower four curves show
the effect of including these corrections using model A (contin-
uous curves) and model B (dashed curves) for the diffractive
eigenstates (|φi〉 of Sects. 2 and 3)

differential elastic and soft diffraction cross sections [9], in
which the parameter γ was fixed to be 0.4. Note that in
the previous paper [9] both the functions Ωi were required
to have a common b behaviour (in order not to introduce
extra parameters). To retain the model we have therefore
carried over the same form for both Ωv and Ωsea, although,
in principle, we might expect them to have a different b
profile.

First we indicate why the soft rescattering effects
(Ωi != 0) of the model based on (25) modify the β dis-
tribution of the dijet process in a characteristic way. Note
that the CDF measurements cover a narrow ξ interval,
0.035 ≤ ξ ≤ 0.095, and hence that the invariant mass
squared of the diffractively produced state, M2 = ξs, re-
mains close to the average value 2 × 105 GeV2. Also the
mass squared of the produced dijet system,

M2
jj = x1βM2, (28)

see Fig. 2, does not change much compared to its average
value of about 1× 103 GeV2 calculated for the CDF kine-
matical range. Thus x1β $ 0.005 and so for β ! 0.25 we
have x1 " 0.02, whereas for β ∼ 0.025 we have x1 ∼ 0.2.
Therefore for large β (small x1) sea quarks and gluons
will give the dominant contribution, while for small β the
valence quarks play an important role. Hence the sur-
vival probability should increase as x1 increases and β
decreases.

The calculation of the diffraction dijet rate, incorporat-
ing the rescattering effects of (25), confirms these expec-

tations, as shown by the lower pair of continuous curves (I
and II) in Fig. 4. These curves are parameter-free predic-
tions of the diffractive dijet rate based on the two-channel
eikonal model of [9] and on the diffractive distributions
obtained from HERA data. The two models (A and B of
Sect. 3) for the diffractive eigenstates (|φ1〉 and |φ2〉) give
similar predictions to each other, as shown respectively
by the continuous and dashed curves in the lower part of
Fig. 3. We see that the pair of curves II satisfactorily repro-
duce the normalisation and the experimentally observed
shape of the β distribution. Curves I also give a satisfac-
tory description at low β; the difference at larger β just
reflects the uncertainty in the ‘HERA’ diffractive distri-
butions. Recall that the predicted shapes show an anoma-
lously strong increase12, 1/βδ with δ ≈ 0.8−0.9, for small
β, as compared with the δ ≈ 0.4 − 0.5 behaviour given
by the partonic distributions of the Pomeron. A possible
change of ET (jet), due to a variation ∆ET of the trans-
verse energy of the underlying event with β, was taken into
account in our calculations. We took ∆ET = C(1 − β)2
with C = 0.76 GeV chosen so as to satisfy the observed
〈∆ET 〉 = 0.54 GeV [17]. The origin of such β-behaviour
can be traced to the fragmentation of the gluon jet. It
leads to a small ∼ 10% decrease of the theoretical predic-
tions for β ! 0.2.

The overall normalisation of the prediction for the
CDF dijet data, which is reproduced by the average value
of the survival probability (25), is sensitive to the impact
parameter distributions, Mi(s, b), of the hard diffractive
process. Such a comparison can therefore provide infor-
mation on these distributions which, in turn, reveal the
spatial structure of the hard process. Our curves are ob-
tained under the same assumptions for the single diffrac-
tive production of a massive hadronic state as were used
in [9]. That is, as for the minimum bias single diffractive
process, but without the term α′ ln(M2/s0), since α′ → 0
in (LO) DGLAP evolution to the scale µ2 ∼ 75 GeV2 of
the hard subprocess.

Our calculation of diffractive dijet production illus-
trates a crucial ingredient necessary in the description of
rapidity gap processes. Namely that the survival prob-
ability of a gap can depend on x1 of the partons in the
proton (see Fig. 2a). This leads to many experimental con-
sequences for processes with rapidity gaps. For instance,
if diffractive dijet production were measured at higher
(LHC) energies with the same jet threshold (Ej

T ), then
the values of x1 of the partons from the proton will be
much smaller throughout the same interval of β. Thus the
variation of |S|2 with β will disappear, and the shape of
the β distribution in this interval will be close to that
measured at HERA. The effect that is observed at the
Tevatron is predicted to occur at the LHC, but at much
smaller values of β, see (28).

12 This increase is still somewhat weaker than that seen in the
data (δ ≈ 1) [17]. However the CDF data include up to 4 jets,
while the theoretical predictions are given for 2 jet production.
If the data are restricted to two jet production then the increase
is less steep (and given by the lower part of the shaded band)
[17], and, in fact, in agreement with our β dependence.

KKMR 2001 
Interplay of  “soft” and “hard” dynamics 
in QCD. 

fraction of  P momentum carried by parton 

Survival probability (Bjorken 1992) : no other interactions occur except the hard coll. of  interest 

Strong suppression of  inelastic diffraction in 
the region of  small b (P  → 0  ). Inelastic diff. 
occurs at the periphery of  interaction region, 
where nonperturbative effects are essential. 

The role of multiple rescattering in hard processes   



8/25/13	   Mar+n	  Poghosyan	   44	  

At E < Ec (Ec ~ mR)  an elastic hA –scattering amplitude can be considered as 
successive rescatterings of  an initial hadron on nucleons of  a nucleus. 
(Glauber) 
 
At high energies hadronic (nuclear) fluctuations are “prepared” long before the 
interaction. 
 
For E > Ec  there is a coherent interaction of  constituents of  a hadron with nucleons of  
a nucleus. hA elastic amplitude can be calculated as in the Glauber model, but with 
account of  diffractive intermediate states. 
 (Gribov) 
 
 

reduces its value by a factor close to 3 – implying that the true (or bare) triple Pomeron

coupling is about 3 times larger than the effective one. In DIS, the eikonal corrections

disappear very fast when Q increases and thus the bare coupling is the relevant one. In

single particle inclusive production at high energies, the same is true since the eikonal

corrections are absent due to the AGK cancellation. This is the physical reason for the

large shadowing corrections obtained in this paper.

For collisions of identical nuclei (SS, PbPb) the A4/3–dependence of particle densities

of eq. (10) typical for the Glauber model changes to the behaviour Aδ. The value of

delta is a weak function of energy and it is equal to δ ≈ 1.1 at LHC energies. It means

that at these energies the values of α in the A–dependence of inclusive cross sections for

AB–collisions dσAB/dy ∼ AαBα is close to 0.88. The value of α should slowly decrease as

energy increases. In the case of stronger shadowing for gluons than for quarks a somewhat

smaller value of α can be obtained.

Let us compare our results with Monte–Carlo calculations, which take into account

shadowing effects [29, 30]. In the SFM model [29] the interaction between Pomerons

is introduced via a mechanism of string fusion and is estimated from geometrical sizes

of strings. The accuracy of such an estimate is not clear but it leads to a reasonable

suppression factor (about 2) for particle densities at LHC energies (though application

of the SFM Monte–Carlo is questionable at LHC ,–see above). In the Hijing model [30],

existing data on nuclear shadowing were parameterized and thus the shadowing effects are

also not very diffrent from our predictions, though the Hijing model leads to a somewhat

smaller suppression. This is connected to the choice of a saturation for shadowing at

small values of x (x ∼ 10−3) in their parameterization. The reggeon formalism allows us

to determine the x–dependence of shadowing at small x and it shows that the shadowing

is still increasing as x decreases even for x ∼ 10−4. Saturation happens at much smaller

values of x.

5 Conclusions

Gribov theory of high–energy interactions of hadrons and nuclei is based on general pro-

perties of amplitudes in relativistic quantum theory and provides an unified approach

to a broad class of processes. In this theory, the Glauber approximation to nuclear

dynamics is valid in the region of not too high energies and should be modified at energies

of RHIC and LHC. AGK– cutting rules provide a very powerful tool for the study of

multiparticle production for all types of high–energy processes and allow one to obtain

simple predictions for inclusive cross sections in hh, hA and AB–collisions.

In this paper we used AGK–cutting rules to obtain predictions for densities of particles

12

The role of enhanced diagrams in AA 

Heavy	  Ion	  Phys.	  9	  (1999, published before the RHIC era!)	  
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A4/3  - Gribov-Glauber without enhanced diagrams A1.1  - Gribov-Glauber with enhanced diagrams 
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dN/dη depends on A4/3 or A1.1? 
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