

Exclusive diffraction at HERA

Jan Figiel

Institute of Nuclear Physics, Kraków on behalf of the H1 and ZEUS collaborations

we investigate the **fundamental forces** and **particles** in e p collisions at highest energies – quark and gluon interactions, we verify the Standard Model and seek "new physics" among the other - studying **diffractive** processes ...

Outline

- Introduction to diffraction in h-h and e-p interactions
- Exclusive diffraction at HERA recent results:
 - Vector meson production,
 - Proton-dissociative VM production,
 - Exclusive dipion production,
- Summary

Diffraction in hadron-hadron interactions (1)

Light scattering: Fraunhofer diffraction $(1/k \le R)$

Diffraction in hadron-hadron interactions (2)

<u>Inelastic</u> hadron diffractive dissociation \leftrightarrow coherence condition:

•
$$\Delta I = \Delta Q = \Delta S = 0$$
, $\Delta P = (-1)^J$
• $\xi = M_X^2/s = \Delta p_L/p_L = 1 - |x| < m_\pi/m_p = 0.15$
 $\Delta \eta = \ln(1/\xi) > 2$, ("large rapidity gap, LRG")

s = squared CMS energy of hadrons $\eta = -\ln(\tan(\theta/2))$, (pseudo-)rapidity

Diffraction in hadron-hadron interactions (3)

Regge model of hadronic interactions:

two-body reactions: "trajectory" exchange (s $\rightarrow \infty$)

$$\alpha(t) = \alpha_0 + \alpha' t$$

$$d\sigma/dt \sim F(t) s^{2\alpha(t)-2} = F(t) s^{2\alpha(0)-2} \exp(2\alpha' \log(s) t)$$

$$\sigma_{tot} \sim s^{\alpha(0)-1}$$

Elastic scattering (→ total cross-section): exchange of Pomeron IP trajectory (vacuum quantum numbers)

Universal parametrisation of Donnachie-Landshoff ("soft" Pomeron):

$$\alpha_{IP}(t) = 1.08 + 0.25 t$$

PS: J. D. Bjorken: Regge model foundations are as solid as those of QCD, DIS1994

Diffraction in e-p interactions (1)

HERA: e^{\pm} (27.5 GeV) – p (820/920, 460, 575 GeV) \rightarrow c.m.s energy \leq 320

HERA-1: 1992 – 2000, HERA-2: 2003 – 2007, total lumi 0.5 fb⁻¹ per experiment

Diffraction in e-p interactions (2)

HERA: e^{\pm} (27.5 GeV) – p (820/920 GeV) $\rightarrow \gamma^* p \rightarrow hadrons$

 $Q^{2} - \gamma^{*} \text{ virtuality } (0 - 10^{5} \text{ GeV}^{2})$ $s \approx E_{e}E_{p}, \quad \sqrt{s} \approx 300 \text{ GeV}$ $W - \gamma^{*}p \text{ CMS energy } (20 - 290 \text{ GeV})$ $x \approx Q^{2}/W^{2} - \text{ Bjorken } x = \text{ fractional parton}$ momentum in proton Breit frame $y \approx Q^{2}/(sx) - \text{ fractional energy transfer to } p$

Coherence condition in proton rest frame:

fluctuation length (
$$\gamma^* \rightarrow \text{dipol } q\overline{q}$$
) = $2E_{\gamma}/(m_{qq}^2 + Q^2) > 1 \text{ fm}$
 $\rightarrow x < 0.01$

At HERA diffraction is low Bjorken-x phenomenon!

W

Diffractive Vector Meson production (1)

 $\underbrace{e(k)}_{P(P)} \begin{array}{c} Q^2 & e(k') \\ \gamma/\gamma^*(q) & VM \\ W & VM \\ t \end{array} VM = \rho, \omega, \varphi, J/\psi, \psi', \Upsilon$

proton dissociative

 $|t| < 1 \text{ GeV}^2$

elastic (exclusive)

dominates at high |t|

Q ²	photon virtuality	$Q^2 = -q^2 = -(k - k')^2$
W	CMS energy of yp system	$W^2 = (q + P)^2$
t	(4-mom. transfer) ² at p-vertex	$t = (P - P')^2$
х	Bjorken x = fractional parton momentum in proton Breit frame	$x \approx \frac{Q_2}{W_2}$

Diffractive Vector Meson production (2)

J. Figiel

Vector Dominance Model + Regge				
$\gamma^* p \to VM p = (\gamma^* \to VM) \otimes (VM p \to VM p)$				
• $VMp \rightarrow VMp \Rightarrow$ DL IPomeron exchange				
• $d\sigma/dt \sim \exp(-b(W)t)$, $b \sim R_{int}^{2} \approx 10 \text{ GeV}^{-2}$				
• $b(W) = (b_{VM} + b_p + \alpha' \ln(W^2))$ ("shrinkage")				
• $\sigma_{_{VMp}} \sim W^{4(\alpha 0-1)}/b(W) \sim W^{\delta}, \ \delta \approx 0.22$				
Perturbative QCD				
<i>₽</i> ➡	Large Q^2 , M_{VM} or $ t \rightarrow$ small qq dipol			
	QCD Pomeron exchange:			
	\geq 2 gluons (colour singlet)			

•
$$\sigma_{_{VMp}} \sim (xg(x))^2 \sim W^{0.7}$$
 !!!

• $b \ll 10 \text{ GeV}^2$, weak shrinkage

VM at HERA: transition between soft and hard regime; testbed of QCD scales

Diffractive Vector Meson production (3)

J. Figiel

WE-Heraeus-School "Diffractive and electromagnetic processes...", Heidelberg, 2013

10

Vector mesons: energy dependence (1)

Photoproduction, energy dependence: $\sigma \sim W^{\delta}$

Vector mesons: energy dependence (2)

H1 (DESY-13-058): Elastic and Proton-dissociative Photoproduction of J/ Ψ Mesons at HERA HE: $\sqrt{s} \approx 318$ GeV, LE: $\sqrt{s} \approx 225$ GeV, Eur. Phys. J. **C73** (2013) 2466

Simultaneous fit of elastic and p-diss. cross section:

 $\delta_{\rm el} = 0.67 \pm 0.03, \qquad \delta_{\rm p-diss} = 0.42 \pm 0.05$

Vector mesons: energy dependence (3)

H1 (DESY-13-058): Elastic and Proton-dissociative Photoproduction of J/ Ψ Mesons at HERA

Vector mesons: energy dependence (4)

H1 (DESY-13-058): Elastic and Proton-dissociative Photoproduction of J/ Ψ Mesons at HERA EPJ **C73** (2013) 2466

H1 fit extrapolation to higher energy describes LHCb data as well!

Vector mesons: energy dependence (5)

pQCD calculations: A. Martin et al., arXiv: 0709.4406

- LO and NLO fits to previous J/Ψ data from HERA (gluon densities!)
- Both fits extrapolated to higher energies...
- LO extrapolation describes LHCb data.

VM and DVCS energy dependence compilation

 $\sigma \sim W^{\delta}$

VMs: bigger "hard" scale Q²+M² – steeper rise with W, Q²+M² scale governs "soft" – "hard" interaction transition
 DVCS: always steep rise with W – "hard" interaction...

16

Vector mesons: t – dependence (1)

H1 (DESY-13-058): Elastic and Proton-dissociative Photoproduction of J/Ψ Mesons at HERA EPJ C73 (2013) 2466

Vector mesons: t – dependence (2)

H1 (DESY-13-058): Elastic and Proton-dissociative Photoproduction of J/ Ψ Mesons at HERA

EPJ C73 (2013) 2466

Vector mesons: t – dependence (3)

Measurement of the *t*-dependence in exclusive php of $\Upsilon(1S)$ mesons at HERA, **ZEUS** (Phys.Lett. **B708**(2012)14-20), $Q^2 < 1 \text{ GeV}^2$, 60 < W < 220 GeV

- Fit dN/dt with sum of elastic and p-diss.
- First measurement of slope b for Y photoproduction

VM and DVCS: t-slope compilation

Decreasing slope (and interaction size) with rising scale Q²+M² -

- transition between "soft" and "hard" interaction

Exclusive and diffractive processes..., Trento 2012

HERA vs Central Exclusive Production at LHC

Possible exchanges:

Pomeron (C=+1), QCD: 2 gluons, Odderon (C=-1), QCD: 3 gluons Photon γ (C=-1),

Type Meson		IG	JPC			
S	f0/σ(600), f0(980), f0(1500), χc	0+	0++			
PS π^0 , η_c		1-/0+	0-+			
V	ρ0, ω(782), φ, J/ψ	1+/0-	1			
Т	f2(1270), f2'(1525)	0+	2++			
p γ ρ ν ρ ν ρ ν ρ ν ρ ν ρ ν γ ν γ ν γ ν γ ν γ ν γ ν γ ν γ ν γ						
p γ p p p p p p p p						

Dipion electroproduction (1)

Exclusive electroproduction of two pions at HERA, **ZEUS** (Eur. Phys. J. C**72** (2012) 1869), $2 < Q^2 < 80 \text{ GeV}^2$, 32 < W < 180 GeV, $|t| < 0.6 \text{ GeV}^2$

 $\gamma^* p \rightarrow \pi^+ \pi^- p$

- Two-pion mass spectrum (without non-resonant background) => pion EM form factor $|F\pi(M\pi\pi)|^2$
- Kuhn-Santamaria parametrisation including $\rho(770)$, $\rho'(1450)$ (radially excited 2S state) and $\rho''(1700)$ (orbitally excited 2D state)

Dipion electroproduction (2)

Fit three resonances...

23

Dipion electroproduction (3)

Details of the fit...

Parameter	ZEUS	PDG
M_{ρ} (MeV)	$771 \pm 2^{+2}_{-1}$	$775.49 {\pm} 0.34$
$\Gamma_{\rho} (MeV)$	$155\pm5\pm2$	149.1 ± 0.8
β	$-0.27 \pm 0.02 \pm 0.02$	
$M_{ ho'}$ (MeV)	$1350 \pm 20^{+20}_{-30}$	1465 ± 25
$\Gamma_{\rho'}$ (MeV)	$460 \pm 30^{+40}_{-45}$	400 ± 60
γ	$0.10 \pm 0.02^{+0.02}_{-0.01}$	
$M_{\rho''}$ (MeV)	$1780 \pm 20^{+15}_{-20}$	1720 ± 20
$\Gamma_{\rho^{\prime\prime}}$ (MeV)	$310 \pm 30^{+25}_{-35}$	250 ± 100
В	$0.41 \pm 0.03 \pm 0.07$	
n	$1.30 \pm 0.06^{+0.18}_{-0.13}$	

Relative amplitudes measured real (!), interference important.

Dipion electroproduction (4)

Compared to $e^+e^- \rightarrow \pi^+\pi^- \dots$

- Some differences between both reactions in the interference region
- Q² dependence of the form factor above ρ(770)...

Dipion electroproduction (5)

Ratio of excited ρ states in function of Q^2

Summary

- New, "hard" face of diffraction in e-p collisions at HERA
- Interplay between soft and hard regime extensively studied
- Regge model + soft phenomenology vs perturbative QCD
- Vector Meson production and DVCS at HERA:
 - VM mass, Q² and t provide control over "hardness" of the interaction,
 - energy dependence \leftrightarrow proton gluon density at low x,
 - t-distribution \leftrightarrow spatial structure of the interaction,
 - sensitivity to VM wave function,

- testbed of pQCD which reproduces general behaviour of the data
- Diffractive analyses at HERA are still ongoing and new results arrive...
- Impact of HERA results on diffraction studies at LHC