Inclusive diffraction at HERA

Lidia Goerlich

Institute of Nuclear Physics, Cracow on behalf of the H1 and ZEUS collaborations

- Selection of diffractive events
- Diffractive parton distribution functions
- Tests of QCD factorisation
- First combination of the H1 and ZEUS diffractive data (proton tag)
- Precision Large Rapidity Gap cross sections
- Pomeron trajectory
- F^D measurement
- Conclusions

HERA

E_e = 27.6 GeV

HERA – the world's only ep collider operated in 1992-2007 colliding electrons or positrons with protons

- Nominal proton beam energy :
 - $E_{n} = 820 / 920 \text{ GeV}$ $\sqrt{S} = 300 / 318 \text{ GeV}$, (HERA- I phase) **E**_p = 920 GeV \sqrt{S} = 318 GeV, (HERA- II phase)
- **Reduced proton beam energy :**

 $E_{p} = 460 \text{ GeV}, \sqrt{S} = 225 \text{ GeV}$ $E_{p} = 575 \text{ GeV}, \sqrt{S} = 250 \text{ GeV}$

Low energy data \rightarrow measurements of the longitudinal proton structure functions F₁ and F₁^D

Deep inelastic scattering at HERA

- \sqrt{s} : e-p centre-of mass energy
- : invariant mass of hadronic final state W

H1 ep \rightarrow eX

Standard DIS variables :

- \mathbf{Q}^2 |virtuality| of the exchanged boson
- fraction of proton momentum carried by X struck quark in Quark Parton Model
- inelasticity, fraction of lepton V energy transfered in the proton rest frame

Q² ≈ xys

Diffractive deep inelastic scattering at HERA

Surprise of HERA : ~10% of DIS events at HERA have no activity in the forward direction (Large Rapidity Gap events)

 \rightarrow exchange of a colourless object, called Pomeron (IP)

Additional variables for DDIS :

$$x_{I\!\!P} = m{\xi} = rac{Q^2 + M_X^2}{Q^2 + W^2}$$

p-momentum fraction carried by IP

$$eta = rac{Q^2}{Q^2 + M_X^2} = x_{q/I\!\!P} = rac{x}{x_{I\!\!P}}$$

IP-momentum fraction carried by struck quark t squared 4-momentum transfer at proton vertex

$$\Delta \eta \sim \ln(W^2 / M_X^2)$$

 $\eta = -\ln [\tan (\theta/2)]$

Selection of diffractive events

ZEUS Leading Proton Spectrometer

Large Rapidity

D

Gap

24

40

Proton spectrometers:

- detection of elastically scattered protons
- low geometrical acceptance \rightarrow less statistics
- direct measurement of t, x_{IP}
- high x_{IP} accessible
- Large Rapidity Gap:
 - selection of LRG adjacent to outgoing (untagged) proton
 - high acceptance \rightarrow more statistics
 - integration over $|t| < 1 \text{ GeV}^2$
 - background from proton dissociation into low mass resonances N*
- The 2 methods have different kinematical coverage, very different systematics 5

Infinite proton momentum frame : diffractive structure function approach

QCD hard scattering collinear factorisation (proven by Collins 1998):

$$d\sigma^{ep \to eXp}(\beta, Q^2, x_{IP}, t) = \Sigma f_i^D(\beta, Q^2, x_{IP}, t) \otimes d\sigma^{ei}(\beta, Q^2)$$

 f_i^D – diffractive parton density functions (DPDFs), DGLAP evolution in Q² σ^{ei} – partonic cross sections, same as in inclusive DIS

Proton vertex factorisation (Ingelman&Schlein, 1985): separate (x_{IP} , t) from (β , Q²) dependences

$$f_i^{D}(\beta, Q^2, x_{IP}, t) = f_{IP/p}(x_{IP}, t) \cdot F_i^{IP}(\beta, Q^2)$$

No QCD basis, consistent with experimental data

Proton rest frame : dipole approach

- The virtual photon fluctuates into a colour singlet qq pair (called dipole)
 - transverse size of the dipole r ~ 1/Q
 - contribution of $q\bar{q}$ g dipoles at low β
- The long living dipole interacts with the gluons from the proton

$$d\sigma_{diff}^{\gamma^*p}/dt \propto \int dz dr^2 \Psi^* \sigma_{qq}^2(x,r^2,t) \Psi$$

- Ψ : $\gamma^* \rightarrow q\overline{q}$ wavefunction σ_{qq} : dipole-proton cross section
- Direct relation to inclusive DIS (the same dipole scattering amplitudes applied for inclusive and diffractive cross sections)
- Dipole approach incorporates saturation dynamics pioneering work of K. Golec-Biernat & M. Wüsthoff, 1999 hep-ph / 9807513, hep-ph / 9903358

Diffractive parton density functions

- Diffractive PDFs obtained through NLO DGLAP QCD fit to data
 - inclusive DDIS cross section $\rightarrow\,$ diffractive gluon density weakly constrained at high z_{IP}
 - combined fit to diffractive inclusive and dijet cross sections \rightarrow comparable precision of quark and gluon densities for all $z_{\rm IP}$

(H1 2007 Jets DPDF, ZEUS DPDF SJ)

z_{IP}= momentum fraction parton / IP

• Differential cross section :

$$\frac{d\sigma^{ep \to eXp}}{l\beta dQ^2 dx_{I\!P}} = \frac{2\pi\alpha^2}{\beta Q^4} \left[1 + (1-y)^2 \right] \sigma_r^{D(3)}(\beta, Q^2, x_{I\!P})$$

• Diffr. reduced cross section (related to structure functions)

$$\sigma_{\rm r}^{\rm D(3)} = F_2^{\rm D(3)} - \frac{y^2}{1 + (1 - y)^2} F_{\rm L}^{\rm D(3)}$$

For β < 0.2, ZEUS and H1 fits agree in shape, but show some difference in the normalisation. At higher β and where the predictions are extrapolated

the disagreement becomes larger.

Nucl. Phys. B831 (2010) 1

Test of QCD factorisation

• Diffractive dijets in DIS

- NLO QCD + ZEUS DPDF SJ remarkably good description of the dijet data
- QCD factorisation holds
- precision limited by theory scale uncertainty

Nucl. Phys. B831 (2010) 1

Dijets in diffractive DIS with a leading proton

- 2 topologies:
- two central jets
- one central + one forward jet search for physics beyond DGLAP

DPDF + NLO QCD works well : QCD factorisation holds in DIS regime No sign for deviations from DGLAP

Eur. Phys. J. C72 (2012) 1970

Dijets in DDIS with a leading proton - proton vertex factorisation

 $\begin{aligned} &4 < Q^2 < 110 \; GeV^2, \, 0.05 < y < 0.7, \, x_{IP} < 0.1, \, Itl < 1 \; GeV^2 \\ &\text{pt of jets in hcms } p_{T,1}^* > 5 \; GeV, \; p_{T,2}^* > 4 \; GeV, \, -1 < \eta_{1,2} < 2.5 \end{aligned}$

Eur. Phys. J. C72 (2012) 1970

t slope consistent with the value measured in inclusive diffractive DIS with a leading proton in the final state

Confirmation of the proton vertex factorisation hypothesis for diffractive dijet production

Combination of proton tagged data

First combined H1 (FPS & VFPS) and ZEUS (LPS) data $2.5 < Q^2 < 200 \ GeV^2, \ 0.00035 < x_{IP} < 0.09, \\ 0.09 < Itl < 0.55 \ GeV^2, \ 0.0018 < \beta < 0.816$

Combination includes correlations of systematic uncertainties

profits from different detectors (systematics)

cross calibration reduces uncertainties significantly (total uncertainty on the x-sec is 6% for the most precise points)

Scaling violation clearly visible

Most precise determination of the absolute normalisation of the ep \rightarrow eXp cross section

Eur. Phys. J. C72 (2012) 2175

Diffraction with Large Rapidity Gap

- New H1 data sets combined with previously published data 35 x more data @ medium Q²
 [Eur. Phys. J. C72 (2012) 2074]
- Kinematical coverage:

 $\begin{array}{l} 3.5 < Q^2 < 1600 \; GeV^2 \\ 0.0017 < \beta < 0.8 \\ 0.0003 < x_{\rm IP} < 0.03 \end{array}$

 Ratio of the LRG and the proton spectrometer FPS results quantifies the contribution of the proton dissociation in LRG

 $\frac{\text{LRG}}{\text{FPS}} = 1.203 \pm 0.019(\text{exp}) \pm 0.087(\text{norm})$

LRG and FPS data agree well, no \textbf{Q}^2 and β differences observed

NLO QCD (DPDF) does well for $Q^2 > 10 \text{ GeV}^2$

- Good agreement between H1 and ZEUS data in general
- ~10% normalisation difference (within the uncertainties)

NLO QCD + DPDF:

- problems at low Q²
- good for $Q^2 > 10 \text{ GeV}^2$

Dipole model with saturation:

- good at low Q²
- too low at high Q² and β

New precise data challenge models

Dipole model : C. Marquet, arXiv:0706.2682 ¹⁵

Eur. Phys. J. C72 (2012) 2074

Diffraction with Large Rapidity Gap

Eur. Phys. J. C72 (2012) 2074

Pomeron trajectory

• Regge fit to LRG cross section (contributions of Pomeron and reggeon trajectories)

$$F_2^{D(3)}(Q^2,\beta,x_{I\!\!P}) = f_{I\!\!P/p}(x_{I\!\!P}) \; F_2^{I\!\!P}(Q^2,\beta) + n_{I\!\!R} \; f_{I\!\!R/p}(x_{I\!\!P}) \; F_2^{I\!\!R}(Q^2,\beta)$$

$$f_{I\!\!P/p,I\!\!R/p}(x_{I\!\!P}) = \int_{t_{cut}}^{t_{min}} \frac{e^{B_{I\!\!P,I\!\!R}t}}{x_{I\!\!P}^{2\alpha_{I\!\!P,I\!\!R}(t)-1}} \mathrm{d}t$$

Mean value of the Pomeron intercept :

$$\alpha_{I\!\!P}(0) = 1.113 \pm 0.002 \text{ (exp.)} ^{+0.029}_{-0.015} \text{ (model)}$$

- Independent of Q²
- Good agreement of all HERA measurements
- Supports the proton vertex factorisation
 - $\alpha_{\text{IP}}(\textbf{0})$ consistent with 'soft IP'
 - $\alpha'_{\text{IP}} \leq 0.1$ typical for 'hard IP'

$$\alpha_{I\!\!P,I\!\!R}(t) = \alpha_{I\!\!P,I\!\!R}(0) + \alpha'_{I\!\!P,I\!\!R}t$$

Eur. Phys. J. C72 (2012) 2074

complicated interplay of hard and soft phenomena

Diffractive longitudinal structure function F^D

• F^D_L is sensitive to gluons and provides an independent test of QCD factorisation

$$\sigma_{r}^{D} = F_{2}^{D} - \frac{y^{2}}{Y_{+}} F_{L}^{D} \qquad Y_{+} = 1 + (1 - y)^{2}$$
$$Q^{2} = x_{IP} \beta y s$$

- Data at different centre-of-mass energy are needed
- Highest sensitivity to F_L^D at high y (low β)
- Challenging measurement due to high level of photoproduction background

 $E_p = 460 \text{ GeV}$

F_L in diffraction

Eur. Phys. J. C72 (2012) 1836

Direct mesurement of F_2^{D} and F_L^{D} (no assumptions)

 F_L^D measurements compared with leading twist predictions (NLO QCD + H1 DPDF) and with the model including a higher twist contribution derived from a colour dipole approach (Golec-Biernat & Luszczak)

H1 Collaboration

Ratio R^D of cross sections for longitudinally to transversly polarised photons :

 $\mathbf{R}^{\mathrm{D}} = \mathbf{F}_{\mathrm{L}}^{\mathrm{D}} / (\mathbf{F}_{2}^{\mathrm{D}} - \mathbf{F}_{\mathrm{L}}^{\mathrm{D}})$

At $Q^2 = 11.5 \text{ GeV}^2$ longitudinally and transversly polarized photon cross-sections ¹⁹ are of the same magnitude ($R_D \sim 1$ and $F_2^D \sim 2F_L^D$)

Summary

20 years of diffraction measurements at HERA

- First combination of the H1 and ZEUS diffractive data (proton-tag results)
- H1 precision LRG measurement using the full dataset Overall good agreement between H1 and ZEUS results
- The first direct measurement of F^D
- HERA measurements support the proton vertex and QCD factorisation hypothesis
- Precise HERA data provide new constraints to QCD based models

Interplay between soft and hard phenomena still represent a challenge for theoretical models of ep diffraction

backup

Dijets in photoproduction – breaking of QCD factoristaion ?

 $\gamma^{*}p,\,Q^{2}\rightarrow$ 0, direct and resolved photoproduction

hadron-like component in resolved γ^*p : photon fluctuates into hadronic system taking part in hard scattering (x_y < 0.2)

 X_{γ} – fraction of photon's momentum in hard subprocess

Factorisation breaking observed by H1, two analyses, EPJC C51 (2007),549, - suppression ~ 0.5 EPJ C68 (2010),381 - suppression ~ 0.6

not observed by ZEUS, Nucl. Phys. B381 (2010) - no suppression ~ 1.

Diffractive final states

Resolved Pomeron model (Ingelman & Schlein) based on QCD and proton vertex factorisation.

(RAPGAP generator, IP + Reggeon trajectories, DPDF H1 2006 Fit B)

2 Gluon Pomeron model (J. Bartels et al.)

Interaction of IP modeled as colourless pair of gluons with qq or qqg configurations emerging from the photon.

(RAPGAP, unintegrated PDF – set A0)

Soft Colour Interaction (SCI) (Edin, Ingelman & Rathsman)

Non-diffractive DIS with subsequent colour rearrangement between the partons in the final state.

Suppression of long strings (SCI + GAL)

(LEPTO generator, PDF CTEQ6L)

QCD dynamics at low Bjorken-x

HERA : DIS at low Bjorken-x down to $10^{-5} \rightarrow \text{energy in } \gamma^* \text{p cms is large} (W_{\gamma^* \text{p}} \approx Q^2 / x)$

- long gluon cascades exchanged between the proton and the photon
- pQCD multiparton emissions described only with approximations :

Search at HERA for effects of parton dynamics beyond the standard DGLAP approach

- Strong rise of the proton structure function $F_2(x, Q^2)$ with decreasing x
 - well described by NLO DGLAP over a large range of Q²
 - F₂ measurement too inclusive to discriminate between different QCD evolution schemes
- Look at hadronic final states reflecting kinematics, structure of gluon emissions

Evidence of higher twist effects in DDIS

L. Motyka, L. Sadzikowski, W. Slominski, arXiv: 1203.5461

Standard twist-2 DGLAP description of the DDIS cross section fails below $Q^2 < 5 \text{ GeV}^2$

ZEUS LRG data : Nucl. Phys. B816 (2009) 1

> HT contributions from Marquer -Munier & Shoshi saturation model

Inclusion of twist 4 and 6 to the DGLAP fit – good description of the data at low Q²