Hadron Spectroscopy at COMPASS and ALICE plus related experiments

Suh-Urk CHUNG

Senior Scientist Emeritus Brookhaven National Lab. Upton, NY, USA Physics Department CERN 1211 Genève, Suisse

Physik-Department E18 Tech. Universität München Garching, Germany Department of Physics Pusan National Univ. Busan 609-735, Korea

1/42

Based on the slides provided by Boris Grube, TU/München

Heidelberg Summer School (Wilhelm und Else Heraeus-Stiftung) Heidelberg, 02–06 September 2013

Regge Trajectories

Suh-Urk CHUNG

BNL / CERN / TU München / PNU

Heidelberg Summer School

Regge Trajectories

Suh-Urk CHUNG

BNL / CERN / TU München / PNU

Heidelberg Summer School

Prelude

• Breit-Wigner Form for $\{m_0, \Gamma_0\}$ for $X^0 \to \pi^+ \pi^-$: Let the spin $J = \ell$, where ℓ = the orbital angular momentum

$$\Delta_{\ell}(m) = \frac{m_0 \Gamma_{\ell}(m)}{m_o^2 - m^2 - i m_0 \Gamma_{\ell}(m)} = \exp\left[i \,\delta_{\ell}(m)\right] \sin \delta_{\ell}(m)$$

$$\Gamma_{\ell}(m) = \Gamma_0 \frac{F_{\ell}(m)}{F_{\ell}(m_0)}, \quad \Gamma_{\ell}(m_0) = \Gamma_0$$

$$F_0(m) = F_0(m_0) = 1 \quad \text{for} \quad \ell = 0$$

• Blatt-Weisskopf barrier factors for $F_{\ell}(m)$:

F. von Hippel and C. Quigg, Phys. Rev. 5, 624 (1972)

Prelude

• Breit-Wigner Form for $\{m_0, \Gamma_0\}$ for $X^0 \to \pi^+ \pi^-$: Let the spin $J = \ell$, where ℓ = the orbital angular momentum

$$\Delta_{\ell}(m) = \frac{m_0 \Gamma_{\ell}(m)}{m_o^2 - m^2 - i m_0 \Gamma_{\ell}(m)} = \exp\left[i \,\delta_{\ell}(m)\right] \sin \delta_{\ell}(m)$$

$$\Gamma_{\ell}(m) = \Gamma_0 \frac{F_{\ell}(m)}{F_{\ell}(m_0)}, \quad \Gamma_{\ell}(m_0) = \Gamma_0$$

$$F_0(m) = F_0(m_0) = 1 \quad \text{for} \quad \ell = 0$$

• Blatt-Weisskopf barrier factors for $F_{\ell}(m)$:

F. von Hippel and C. Quigg, Phys. Rev. 5, 624 (1972)

Prelude—continued

PWA's two- and three-body systems

Two-body system: 2-dimentional in $\{\cos \theta, \phi\}$ $Y_{\ell}^{m}(\Omega)$ or $D_{m0}^{\ell \star}(\phi, \theta, 0)$ Ambiguous solutions:

Techniques of amplitude analysis for two-pseudoscalar systems S. U. Chung, Phys. Rev. **D56**, 7299-7316 (1997)

Three-body system: 5-dimentional in $\{\alpha, \beta, \gamma\}$, m_{12}^2 , m_{23}^2 $D_{m\delta}^{J\star}(\alpha, \beta, \gamma)$, $\delta = \lambda_1 - \lambda_2$

> S. U. Chung, *Spin formalisms*, CERN Yellow Report 71-8, 25 March 1971.

Conclusions and Outlook

QCD and constituent quark model Beyond the constituent quark model

Outline

Introduction

- QCD and constituent quark model
- Beyond the constituent quark model

2 Hadron spectroscopy

- Search for spin-exotic mesons in pion diffraction
- Scalar mesons in central production
- Baryon spectroscopy in proton diffraction

Conclusions and Outlook

5/42

Hadron spectroscopy Conclusions and Outlook QCD and constituent quark model Beyond the constituent quark model

QCD: The Theory of Strong Interaction

Quantum chromodynamics describes interaction of quark and gluon fields

- Non-abelian gauge theory: gluons carry charge and self-interact
- Running coupling constant $\alpha_s(Q)$

Asymptotic freedom

- *α_s* small at short distances (high-energies)
 - Quarks and gluons relevant degrees of freedom
 - Lagrangian calculable by a series expansion in α_s

Confinement of quarks and gluons into hadrons

- α_s large at distances $\mathcal{O}(1 \text{ fm})$
 - Relevant d.o.f.: color-neutral hadrons
 - Series in *α_s* does not converge
 - \implies non-perturbative regime
- Origin of confinement and connection to chiral symmetry breaking still not understood
- Explanation for 98 % of mass of visible matter in the universe
- Study of hadron spectra provides more insight

ummer School 02–06 September, 2013

Conclusions and Outlook

QCD and constituent guark model

QCD: The Theory of Strong Interaction

Quantum chromodynamics describes interaction of guark and gluon fields

- Non-abelian gauge theory: gluons carry charge and self-interact
- Running coupling constant $\alpha_s(Q)$

Asymptotic freedom

- α_s small at short distances (high-energies)
 - · Quarks and gluons relevant degrees of freedom
 - Lagrangian calculable by a series expansion in α_s

- α_s large at distances $\mathcal{O}(1 \text{ fm})$
- Origin of confinement and connection to chiral
- Study of hadron spectra provides more insight

Hadron spectroscopy Conclusions and Outlook QCD and constituent quark model Beyond the constituent quark model

QCD: The Theory of Strong Interaction

Quantum chromodynamics describes interaction of quark and gluon fields

- Non-abelian gauge theory: gluons carry charge and self-interact
- Running coupling constant $\alpha_s(Q)$

Asymptotic freedom

- *α_s* small at short distances (high-energies)
 - Quarks and gluons relevant degrees of freedom
 - Lagrangian calculable by a series expansion in α_s

Confinement of quarks and gluons into hadrons

- α_s large at distances $\mathcal{O}(1 \text{ fm})$
 - Relevant d.o.f.: color-neutral hadrons
 - Series in α_s does not converge
 - \implies non-perturbative regime
- Origin of confinement and connection to chiral symmetry breaking still not understood
- Explanation for 98% of mass of visible matter in the universe
- Study of hadron spectra provides more insight

6/42

Mesons in the Constituent Quark Model

Constituent Quark Model (CQM)

- Goes back over 40 years to Gell-Mann and Zweig
- "Constituent" quarks: quasi-particles with additional effective mass due to interaction with gluon field
 - E.g. for light-quark mesons $m_u = m_d = 310 \text{ MeV/}c^2$, $m_s = 485 \text{ MeV/}c^2$ Gasiorowicz *et al.*, AJP 49 (1981) 954
- Caveat: no connection to QCD

Mesons in CQM

- Color-singlet $|q\bar{q}'\rangle$ states, grouped into SU(N)_{flavor} multiplets
- Meson masses are sum of constituent quark masses
- Together with hyperfine (spin-spin) interaction, meson spectrum is roughly described

Mesons in the Constituent Quark Model

Constituent Quark Model (CQM)

- Goes back over 40 years to Gell-Mann and Zweig
- "Constituent" quarks: quasi-particles with additional effective mass due to interaction with gluon field
 - E.g. for light-quark mesons $m_u = m_d = 310 \text{ MeV/}c^2$, $m_s = 485 \text{ MeV/}c^2$ Gasiorowicz *et al.*, AJP 49 (1981) 954
- Caveat: no connection to QCD

Mesons in CQM

- Color-singlet $|q\bar{q}'\rangle$ states, grouped into SU(N)_{flavor} multiplets
- Meson masses are sum of constituent quark masses
- Together with hyperfine (spin-spin) interaction, meson spectrum is roughly described

QCD and constituent quark model Beyond the constituent quark model

Mesons in the Constituent Quark Model

Spin-parity rules for bound $q\bar{q}$ system

- Quark spins couple to total intrinsic spin *S* = 0 (singlet) or 1 (triplet)
- Relative orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$

- Charge conjugation $C = (-1)^{L+S}$
- Forbidden *J^{PC}*: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...
- Extension to charged mesons via *G* parity: $G = C (-1)^{I}$
 - *I* isospin of meson
 - Convention: assign J^{PC} quantum numbers of neutral partner in isospin multiplet

QCD and constituent quark model Beyond the constituent quark model

Mesons in the Constituent Quark Model

Spin-parity rules for bound $q\bar{q}$ system

- Quark spins couple to total intrinsic spin *S* = 0 (singlet) or 1 (triplet)
- Relative orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- Forbidden J^{PC}: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺,...
- Extension to charged mesons via G parity: $G = C (-1)^{1}$
 - I isospin of meson
 - Convention: assign J^{PC} quantum numbers of neutral partner in isospin multiplet

QCD and constituent quark model Beyond the constituent quark model

Mesons in the Constituent Quark Model

Spin-parity rules for bound $q\bar{q}$ system

- Quark spins couple to total intrinsic spin *S* = 0 (singlet) or 1 (triplet)
- Relative orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$

- Forbidden *J^{PC}*: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...
- Extension to charged mesons via *G* parity: $G = C (-1)^{I}$
 - I isospin of meson
 - *Convention:* assign *J*^{*PC*} quantum numbers of neutral partner in isospin multiplet

8/42

QCD and constituent quark model Beyond the constituent quark model

Mesons in the Constituent Quark Model

Light-quark meson spectrum

Suh-Urk CHUNG

QCD and constituent quark model Beyond the constituent quark model

Mesons in the Constituent Quark Model

Light-quark meson spectrum (cont.)

v=n+L-1				
	${}^3_2{}^{\mathrm{P}}2^{=2}^{++}$	${}^3_2P_1 = 1^{++}$	$^{3}_{1}D_{3}=3^{}$	$_{1}^{3}D_{2}=2^{}$
$2^{\begin{bmatrix} \pi(1800) \\ K(1830) \\ \eta(1760) \\ \frac{1}{3}S_0 = 0^{-+} & \frac{3}{3}S_1 = 1^{} \\ \end{bmatrix}}$	$\begin{array}{c} a_2(1700) \\ K_2^*(1980) \\ f_2(2010) \\ f_2(1950) \end{array}$	a1(1640)	$\rho_3^{(1690)}$ $K^*_{3}^{(1780)}$ $\omega_3^{(1670)}$ $\phi_3^{(1850)}$	K ₂ (1820)
			$\begin{array}{c} \pi_2(1670) \\ K_2(1770) \\ \eta_2(1645) \\ \eta_2(1870) \end{array}$	ρ(1700) Κ [*] (1680) ω(1650)
	3 ₁ P ₂ =2 ⁺⁺	${}^{3}_{1}P_{1}=1^{++}$	${}^{1}_{1}D_{2}=2^{-+}$	${}^{3}_{1}D_{1}=1^{}$
π(1300) o(1450)	a ₂ (1320) K ₂ *(1430)	a ₁ (1260) K _{1a} fr(1285)	${}^{2S+1}_{n}L_{J} = J^{PC}$	
$\begin{array}{c}1\\K(1460)\\\eta(1295)\\\eta(1440)\\\phi(1680)\end{array}$	f2'(1525) a ₀ (1450)	f1(1420)		\uparrow^n
$\frac{1}{2}S_0 = 0^{-+}$ $\frac{3}{2}S_1 = 1^{}$	f ₀ (1370) f ₀ (1710)	K 1b h1(1170) h1(1380)		q
$0 \begin{array}{ c c c c c c c c } \pi & & & & & & \\ & & &$	³ ₁ P ₀ =0 ⁺⁺	1 ₁ P ₁ =1 ⁺⁻		9
${}^{1}_{1}S_{0}=0^{-+}$ ${}^{3}_{1}S_{1}=1^{}$		9	-9	, L
0		1		4

Amsler et al., Phys. Rept. 389 (2004) 61

"Light meson frontier":

- Many missing and disputed states in mass region
 m ≈ 2 GeV/*c*²
- Identification of higher excitations becomes exceedingly difficult
 - Wider states + higher state density
 - More overlap and mixing

QCD and constituent quark model Beyond the constituent quark model

Mesons in the Constituent Quark Model

Light-quark meson spectrum (cont.)

v=n+L-1				
	${}^{3}_{2}P_{2}=2^{++}$	${}^3_2P_1 = 1^{++}$	$^{3}_{1}D_{3}=3^{}$	$_{1D_{2}=2}^{3}$
x(1800) K(1830)	$a_2(1700)$ $K_2^*(1980)$ $f_2(2010)$ $f_2(1950)$	a1(1640)	$\rho_3^{(1690)}$ $K^*_{3}^{(1780)}$ $\omega_3^{(1670)}$ $\phi_3^{(1850)}$	K ₂ (1820)
$2 \begin{bmatrix} \eta^{(1760)} \\ \frac{1}{3}S_0 = 0^{-+} & \frac{3}{3}S_1 = 1^{} \end{bmatrix}$			$\begin{array}{c} \pi_2(1670) \\ K_2(1770) \\ \eta_2(1645) \\ \eta_2(1870) \end{array}$	$\rho(1700)$ K [*] (1680) $\omega(1650)$
	31P2=2++	${}^{3}_{1}P_{1}=1^{++}$	${}^{1}_{1}{}^{D}_{2}{}^{=2}{}^{-+}$	${}^{3}_{1}D_{1}=1^{}$
(170)	a ₂ (1320) K ₂ *(1430)	a1(1260) K1a	^{2S+1} _n L	$J = J^{PC}$
$1 \begin{array}{c} \pi^{(1300)} & \rho^{(1430)} \\ \kappa^{(1460)} & \kappa^{*}(1410) \\ \eta^{(1295)} & 0 \\ \eta^{(1440)} & \phi^{(1680)} \end{array}$	f ₂ (1270) f ₂ '(1525) a ₀ (1450)	f1(1285) f1(1420) b1(1235)		↓ n
$\frac{1}{2}S_0=0^{-+}$ $\frac{3}{2}S_1=1^{}$	$K_0^{*}(1430)$ $f_0(1370)$ $f_0(1710)$	K _{1b} h ₁ (1170) h ₁ (1380)		<u>Ţ</u>
$\begin{array}{c c} x & \rho(770) \\ K & K^{*}(892) \\ \eta & \phi(782) \\ \dot{\phi}(1020) \end{array}$	³ ₁ P ₀ =0 ⁺⁺	1 ₁ P ₁ =1 ⁺⁻	\uparrow^L	9
${}^{1}_{1}S_{0}=0^{-+}$ ${}^{3}_{1}S_{1}=1^{}$		9	-q	, L
0		1		-

Amsler et al., Phys. Rept. 389 (2004) 61

"Light meson frontier":

- Many missing and disputed states in mass region m ≈ 2 GeV/c²
- Identification of higher excitations becomes exceedingly difficult
 - Wider states + higher state density
 - More overlap and mixing

QCD: Gluonic d.o.f. should manifest themselves in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited glue
 - Definition of "excited glue" model dependent
- Angular momentum of glue component \implies *all* J^{PC} possible
- Lightest predicted hybrid: spin-exotic J^{PC} =
 - Mass 1.3 to 2.2 GeV/c²
 - Experimental candidates π_i (1400, 1600, 2000) controversial

Glueballs |gg|

- Bound states consisting purely of gluons
- Lightest predicted glueball: ordinary J^{PC} = 0⁺⁺
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states
 - Mass 1.5 to 2.0 GeV/c²
 - Experimental candidate *f*₀(1500); glueball interpretation disputed

QCD: Gluonic d.o.f. should manifest themselves in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited glue
 - Definition of "excited glue" model dependent
- Angular momentum of glue component \implies all J^{PC} possible
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$
 - Mass 1.3 to 2.2 GeV/*c*²
 - Experimental candidates $\pi_1(1400, 1600, 2000)$ controversial

Glueballs |gg

- Bound states consisting purely of gluons
- Lightest predicted glueball: ordinary J^{PC} = 0⁺
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states
 - Mass 1.5 to 2.0 GeV/c²
 - Experimental candidate $f_0(1500)$; glueball interpretation disputed

QCD: Gluonic d.o.f. should manifest themselves in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited glue
 - Definition of "excited glue" model dependent
- Angular momentum of glue component \implies *all* J^{PC} possible
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$
 - Mass 1.3 to 2.2 GeV/c²
 - Experimental candidates $\pi_1(1400, 1600, 2000)$ controversial

Glueballs |gg

- Bound states consisting purely of gluons
- Lightest predicted glueball: ordinary J^{PC} = 0⁻¹
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states
 - Mass 1.5 to 2.0 GeV/c²
 - Experimental candidate *f*₀(1500); glueball interpretation disputed

QCD: Gluonic d.o.f. should manifest themselves in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited glue
 - Definition of "excited glue" model dependent
- Angular momentum of glue component \implies *all* J^{PC} possible
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$
 - Mass 1.3 to 2.2 GeV/c²
 - Experimental candidates $\pi_1(1400, 1600, 2000)$ controversial

Glueballs $|gg\rangle$

- Bound states consisting purely of gluons
- Lightest predicted glueball: ordinary $J^{PC} = 0^{+1}$
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states
 - Mass 1.5 to 2.0 GeV/c²
 - Experimental candidate $f_0(1500)$; glueball interpretation disputed

QCD: Gluonic d.o.f. should manifest themselves in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited glue
 - Definition of "excited glue" model dependent
- Angular momentum of glue component $\implies all J^{PC}$ possible
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$
 - Mass 1.3 to 2.2 GeV/*c*²
 - Experimental candidates $\pi_1(1400, 1600, 2000)$ controversial

Glueballs $|gg\rangle$

- Bound states consisting purely of gluons
- Lightest predicted glueball: ordinary $J^{PC} = 0^{++}$
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states
 - Mass 1.5 to 2.0 GeV/c²
 - Experimental candidate $f_0(1500)$; glueball interpretation disputed

QCD in the confinement regime: $\overline{\alpha_s = \mathcal{O}(1)}$

• QCD Lagrangian not calculable using perturbation theory

- Simulation of QCD Lagrangian on finite discreet space-time lattice using Monte Carlo techniques (computationally very expensive)
- Challenge: extrapolation to physical point
 - Heavier *u* and *d* quarks than in reality
 - \implies extrapolation to physical quark masses
 - Extrapolation to infinite volume
 - Extrapolation to zero lattice spacing
 - Rotational symmetry broken due to cubic lattice
- Tremendous progress in past years
 - Finer lattices \implies spin-identified spectra
 - Larger operator bases \implies extraction of many excited states
 - Access to gluonic content of calculated states

QCD in the confinement regime: $\alpha_s = \mathcal{O}(1)$

• QCD Lagrangian not calculable using perturbation theory

- Simulation of QCD Lagrangian on finite discreet space-time lattice using Monte Carlo techniques (computationally very expensive)
- Challenge: extrapolation to physical point
 - Heavier *u* and *d* quarks than in reality
 - \implies extrapolation to physical quark masses
 - Extrapolation to infinite volume
 - Extrapolation to zero lattice spacing
 - Rotational symmetry broken due to cubic lattice
- Tremendous progress in past years
 - Finer lattices \implies spin-identified spectra
 - Larger operator bases \implies extraction of many excited states
 - Access to gluonic content of calculated states

QCD in the confinement regime: $\alpha_s = \mathcal{O}(1)$

• QCD Lagrangian not calculable using perturbation theory

- Simulation of QCD Lagrangian on finite discreet space-time lattice using Monte Carlo techniques (computationally very expensive)
- Challenge: extrapolation to physical point
 - Heavier *u* and *d* quarks than in reality
 - \implies extrapolation to physical quark masses
 - Extrapolation to infinite volume
 - Extrapolation to zero lattice spacing
 - Rotational symmetry broken due to cubic lattice
- Tremendous progress in past years
 - Finer lattices \implies spin-identified spectra
 - Larger operator bases \implies extraction of many excited states
 - Access to gluonic content of calculated states

QCD in the confinement regime: $\alpha_s = \mathcal{O}(1)$

• QCD Lagrangian not calculable using perturbation theory

- Simulation of QCD Lagrangian on finite discreet space-time lattice using Monte Carlo techniques (computationally very expensive)
- Challenge: extrapolation to physical point
 - Heavier *u* and *d* quarks than in reality
 - \implies extrapolation to physical quark masses
 - Extrapolation to infinite volume
 - Extrapolation to zero lattice spacing
 - Rotational symmetry broken due to cubic lattice
- Tremendous progress in past years
 - Finer lattices \implies spin-identified spectra
 - Larger operator bases ⇒ extraction of many excited states
 - Access to gluonic content of calculated states

QCD and constituent quark model Beyond the constituent quark model

Light-Meson Spectrum in Lattice QCD

Resonance widths and decay modes still very difficult

Suh-Urk CHUNG

QCD and constituent quark model Beyond the constituent quark model

 $|q\bar{q}\rangle$

 $|q\bar{q}g\rangle$

 $|gg\rangle$ $|q^2\bar{q}^2\rangle$

) = **1** + **2** + **0** + **•** •

Beyond the Constituent Quark Model

Finding states beyond the CQM is difficult

- Physical mesons = linear superpositions of *all* allowed basis states: |qq̄⟩, |qq̄g⟩, |gg⟩, |q²q̄²⟩,...
 - Amplitudes determined by QCD interactions
- Resonance classification in quarkonia, hybrids, glueballs, tetraquarks, etc. assumes dominance of *one* basis state
 - In general "configuration mixing"
 - Disentanglement of contributions difficult

Special case: "exotic" mesons

- Have quantum numbers forbidden for $|q\bar{q}
 angle$
 - Discovery \implies unambiguous proof for meson states beyond CQM
- Especially attractive:

"spin-exotic" states with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$

QCD and constituent quark model Beyond the constituent quark model

Beyond the Constituent Quark Model

Finding states beyond the CQM is difficult

- Physical mesons = linear superpositions of *all* allowed basis states: |qq̄⟩, |qq̄g⟩, |gg⟩, |q²q̄²⟩,...
 - Amplitudes determined by QCD interactions
- Resonance classification in quarkonia, hybrids, glueballs, tetraquarks, etc. assumes dominance of *one* basis state
 - In general "configuration mixing"
 - Disentanglement of contributions difficult

Special case: "exotic" mesons

- Have quantum numbers forbidden for $|q\bar{q}
 angle$
 - Discovery \implies unambiguous proof for meson states beyond CQM
- Especially attractive:

"spin-exotic" states with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$

= +

+ 0+

 $|q\bar{q}\rangle$

 $|q\bar{q}g\rangle$

 $|gg\rangle$

 $\bullet |q^2 \bar{q}^2\rangle$

Beyond the Constituent Quark Model

Finding states beyond the CQM is difficult

- Physical mesons = linear superpositions of *all* allowed basis states: $|q\bar{q}\rangle$, $|q\bar{q}g\rangle$, $|gg\rangle$, $|gg\rangle$, $|q^2\bar{q}^2\rangle$, ...
 - Amplitudes determined by QCD interactions
- Resonance classification in guarkonia, hybrids, glueballs, tetraquarks, etc. assumes dominance of one basis state
 - In general "configuration mixing"
 - Disentanglement of contributions difficult

Special case: "exotic" mesons

- Have quantum numbers forbidden for $|q\bar{q}\rangle$
 - Discovery \implies unambiguous proof for meson states beyond CQM
- Especially attractive:

"spin-exotic" states with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$

earch for spin-exotic mesons in pion diffraction calar mesons in central production laryon spectroscopy in proton diffraction

Outline

Introduction

- QCD and constituent quark model
- Beyond the constituent quark model

2 Hadron spectroscopy

- Search for spin-exotic mesons in pion diffraction
- Scalar mesons in central production
- Baryon spectroscopy in proton diffraction

3 Conclusions and Outlook

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

E/HCAL2

E/HCAL1

The COMPASS Experiment at the CERN SPS

Experimental Setup

NIM A 577, 455 (2007)

Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

RPD + Target

Suh-Urk CHUNG

Beam

SM

RICF

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

The COMPASS Experiment at the CERN SPS

Experimental Setup

NIM A 577, 455 (2007)

Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

RPD + Target

Suh-Urk CHUNG

BNL / CERN / TU München / PNU

Heidelberg Summer School

Hadron spectroscopy Conclusions and Outlook Search for spin-exotic mesons in pion diffraction

Production of Hadrons in Diffractive Dissociation BNL E852, VES, COMPASS

• Soft scattering of beam hadron off nuclear target (remains intact)

- Beam particle is excited into intermediate state X
- X decays into *n*-body final state
- High \sqrt{s} , low t': Pomeron exchange dominant

- Method: partial-wave analysis (PWA)

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Production of Hadrons in Diffractive Dissociation BNL E852, VES, COMPASS

• Soft scattering of beam hadron off nuclear target (remains intact)

- Beam particle is excited into intermediate state X
- X decays into *n*-body final state
- High \sqrt{s} , low *t*': Pomeron exchange dominant
- Rich spectrum: large number of overlapping and interfering X
- Goal: use kinematic distribution of final-state particles to
 - Disentangle all resonances X
 - Determine their mass, width, and quantum numbers
- Method: partial-wave analysis (PWA)
Hadron spectroscopy Conclusions and Outlook Search for spin-exotic mesons in pion diffraction

Production of Hadrons in Diffractive Dissociation BNL E852, VES, COMPASS

• Soft scattering of beam hadron off nuclear target (remains intact)

- Beam particle is excited into intermediate state X
- X decays into *n*-body final state
- High \sqrt{s} , low t': Pomeron exchange dominant
- Rich spectrum: large number of overlapping and interfering *X*
- Goal: use kinematic distribution of final-state particles to
 - Disentangle all resonances X
 - Determine their mass, width, and quantum numbers
- Method: partial-wave analysis (PWA)

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Diffractive Dissociation of π^- into $\pi^-\pi^+\pi^-$ Final State BNL E852, VES, COMPASS

Isobar model: X^- decay is chain of successive two-body decays

"Wave": unique combination of isobar and quantum numbers
 Full wave specification (in reflectivity basis): J^{PC}M^e[isobar]L

Fit model: $\sigma(m_X, \tau) = \sigma_0 \sum_{\epsilon \lambda \lambda'} \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(m_X, \tau) \right|^2$

- Calculable decay amplitudes $A_{wave}(m_X, \tau)$
- Transition amplitudes $T_{wave}(m_X)$ determined from multi-dimensional fit to final-state kinematic distributions taking into account interference effects

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Diffractive Dissociation of π^- into $\pi^-\pi^+\pi^-$ Final State BNL E852, VES, COMPASS

Isobar model: *X*⁻ decay is chain of successive two-body decays

"Wave": unique combination of isobar and quantum numbers
 Full wave specification (in reflectivity basis): J^{PC}M^e[isobar]L

Fit model:
$$\sigma(m_X, \tau) = \sigma_0 \sum_{\epsilon \lambda \lambda'} \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(m_X, \tau) \right|^2$$

- Calculable decay amplitudes $A_{wave}(m_X, \tau)$
- Transition amplitudes $T_{wave}(m_X)$ determined from multi-dimensional fit to final-state kinematic distributions taking into account interference effects

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\rm slow}$

- 190 GeV/*c* negative hadron beam: 97 % π^- , 2 % K^- , 1 % \bar{p}
- Liquid hydrogen target
- Recoil proton *p*_{slow} measured by RPD
- Kinematic range $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

World's largest diffractive 3π data set: pprox**50 M exclusive events**

- Challenging analysis
 - Needs precise understanding of apparatus
 - Model deficiencies become visible

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

World's largest diffractive 3π data set: \approx **50 M exclusive events**

- Challenging analysis
 - Needs precise understanding of apparatus
 - Model deficiencies become visible

Hadron spectroscopy Conclusions and Outlook Search for spin-exotic mesons in pion diffraction

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

Suh-Urk CHUNG

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

$\pi^{-}\pi^{+}\pi^{-}$ invariant mass spectrum

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

Hadron spectroscopy Conclusions and Outlook

Search for spin-exotic mesons in pion diffraction

PWA of $\pi^- p \rightarrow \pi^- \pi^+ \overline{\pi^- p_{slow}}$

Heidelberg Summer School

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

- Structure around 1.1 GeV/*c*² unstable w.r.t. fit model
- Enhancement around 1.6 GeV/c²
- Phase motion w.r.t. to tail of $a_1(1260)$
- Phase locked w.r.t. $\pi_2(1670)$

• Ongoing analysis

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

- Structure around 1.1 GeV/*c*² unstable w.r.t. fit model
- Enhancement around 1.6 GeV/c²
- Phase motion w.r.t. to tail of $a_1(1260)$
- Phase locked w.r.t. $\pi_2(1670)$
- Ongoing analysis

Heidelberg Summer School

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^-\,p o \pi^-\pi^+\pi^-\,p_{ m slow}$

- Structure around 1.1 GeV/*c*² unstable w.r.t. fit model
- Enhancement around 1.6 GeV/c²
- Phase motion w.r.t. to tail of $a_1(1260)$
- Phase locked w.r.t. $\pi_2(1670)$
- Ongoing analysis

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Spin-Exotic $1^{-+} 1^+ [\rho \pi] P$ Wave

Comparison with BNL E852 and VES

COMPASS Events /(20 MeV/c²) $25 - 1^{+}1^{+} \rho \pi P$ COMPASS 2008 $\pi\,p\to\pi\,\pi\,\pi^+p$ $0.1 \text{ GeV}^2/c^2 < t' < 1.0 \text{ Gev}^2/c^2$ 2.2 2.4 0.6 1.4 1.6 1.8 Mass of π π π^+ System (GeV/c²) • 190 GeV/c π beam • 18 GeV/ $c \pi$ beam • *p* target • $50 \cdot 10^6$ events • $0.1 < t' < 0.5 \, (\text{GeV}/c)^2$ • $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$ Rank-2 fit with 53 waves Rank-1 fit with 21/36 waves

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Spin-Exotic $1^{-+} 1^+ [ho \pi] P$ Wave

Comparison with BNL E852 and VES

COMPASS

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Spin-Exotic $1^{-+} 1^+ [\rho \pi] P$ Wave

Comparison with BNL E852 and VES

COMPASS

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Spin-Exotic $1^{-+} 1^+ [ho \pi] P$ Wave

Comparison with BNL E852 and VES

COMPASS Events /(20 MeV/c²) 25 1⁺1⁺ ρ π P COMPASS 2008 $\pi \, p \rightarrow \pi \, \pi \, \pi^+ p$ $0.1 \text{ GeV}^2/c^2 < t' < 1.0 \text{ Gev}^2/c^2$ 0.8 2.4 0.6 1.2 14 1.6 1.8 Mass of \$\pi\$ \$\pi • 190 GeV/c π beam • *p* target • $50 \cdot 10^6$ events • $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$ • Rank-2 fit with 53 waves

Hadron spectroscopy Conclusions and Outlook Search for spin-exotic mesons in pion diffraction

PWA of π^- Pb $\rightarrow \pi^-\pi^+\pi^-$ Pb at low t'COMPASS

$\pi^{-}\pi^{+}\pi^{-}$ production in Primakoff reaction

- Very small momentum transfer: $t' < 0.001 \, (\text{GeV}/c)^2$
- Photoproduction in Coulomb field of heavy target nucleus (Pb)
- For M = 1 waves diffractive contribution kinematically suppressed
- No intensity in 1.6 GeV/ c^2 region in spin-exotic 1⁻⁺ wave

Hadron spectroscopy Conclusions and Outlook

Search for spin-exotic mesons in pion diffraction

PWA of π^- Pb $\rightarrow \pi^-\pi^+\pi^-$ Pb at low t'COMPASS

$\pi^{-}\pi^{+}\pi^{-}$ production in Primakoff reaction

- Very small momentum transfer: $t' < 0.001 \, (\text{GeV}/c)^2$
- Photoproduction in Coulomb field of heavy target nucleus (Pb)
- For M = 1 waves diffractive contribution kinematically suppressed
- No intensity in 1.6 GeV/ c^2 region in spin-exotic 1⁻⁺ wave

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Photoproduction of Spin-Exotic $1^{-+} 1^+ [\rho \pi] P$ Wave

Comparison with CLAS g12

COMPASS Primakoff

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Photoproduction of Spin-Exotic $1^{-+} 1^+ [\rho \pi] P$ Wave

Comparison with CLAS g12

COMPASS Primakoff

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Photoproduction of Spin-Exotic $1^{-+} 1^+ [\rho \pi] P$ Wave

Comparison with CLAS g12

COMPASS Primakoff

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

Summary

Understanding of spin-exotic 1^{-+} wave is work in progress

- COMPASS: intensity in $\rho\pi$ and $\eta'\pi$ channels
 - Similar to BNL E852 and VES
 - Resonance interpretation still unclear
 - As CLAS: no signal in photoproduction
- Spin-exotic 1⁻⁺ also claimed in channels
 - $f_1(1285)\pi$ (E852, VES)
 - $b_1(1235)\pi$ (E852, VES, Crystal Barrel)
 - COMPASS will analyze these channels as well

Improvements of wave set and isobar parameterization

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

Summary

Understanding of spin-exotic 1^{-+} wave is work in progress

- COMPASS: intensity in $\rho\pi$ and $\eta'\pi$ channels
 - Similar to BNL E852 and VES
 - Resonance interpretation still unclear
 - As CLAS: no signal in photoproduction
- Spin-exotic 1⁻⁺ also claimed in channels
 - $f_1(1285)\pi$ (E852, VES)
 - $b_1(1235)\pi$ (E852, VES, Crystal Barrel)
 - COMPASS will analyze these channels as well
- Significant contributions from non-resonant Deck-like processes
 - Inclusion into fit model
- Exploit *t*'-dependence of partial-wave amplitudes
 - PWA in narrow m_{π⁻π⁺π⁻} and t' bins
 - mprovements of wave set and isobar parameterization

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

Summary

Understanding of spin-exotic 1^{-+} wave is work in progress

- COMPASS: intensity in $\rho\pi$ and $\eta'\pi$ channels
 - Similar to BNL E852 and VES
 - Resonance interpretation still unclear
 - As CLAS: no signal in photoproduction
- Spin-exotic 1⁻⁺ also claimed in channels
 - $f_1(1285)\pi$ (E852, VES)
 - $b_1(1235)\pi$ (E852, VES, Crystal Barrel)
 - COMPASS will analyze these channels as well
- Significant contributions from non-resonant Deck-like processes
 - Inclusion into fit model
- Exploit *t*'-dependence of partial-wave amplitudes
 - PWA in narrow m_{π⁻π⁺π⁻} and t' bins
- π_{beam} Isobar π^{-} π^{+} Target Recoil
- Improvements of wave set and isobar parameterization

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Central Production COMPASS, CERN Omega (WA76, WA91, WA102)

Search for glueball candidates

- Glueballs: mesonic states with no valence quarks
- Lattice QCD simulations predict lightest glueballs to be scalars
 - Glueball would appear as supernumerous state
 - Strong mixing with conventional scalar mesons expected
 - Difficult to disentangle
- Pomeron-Pomeron fusion well-suited to search for glueballs
 - Isoscalar mesons produced at central rapidities
 - Scalar mesons dominant in this channel
 - Gluon-rich environment

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

K^+K^- Central Production

Suh-Urk CHUNG

BNL / CERN / TU München / PNU

Heidelberg Summer School

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

K^+K^- Central Production

Suh-Urk CHUNG

BNL / CERN / TU München / PNU

Heidelberg Summer School

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Fit of K^+K^- Mass Dependence

Fit model:

- Relativistic Breit-Wigner resonances
 - $S_0^-: f_0(1370), f_0(1500), f_0(1710)$
 - $D_0^-: f_2(1270), f_2'(1525)$
- Exponentially damped coherent background terms

Suh-Urk CHUNG

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Fit of K^+K^- Mass Dependence

Comparison with WA102

COMPASS

• 450 GeV/*c p* beam

• Fit of wave intensities only

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Fit of K^+K^- Mass Dependence

Comparison with WA102

COMPASS

Suh-Urk CHUNG

BNL / CERN / TU München / PNU

Heidelberg Summer School

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

PWA of $p \: p ightarrow p_{\mathsf{fast}} \: K^{\scriptscriptstyle +} K^{\scriptscriptstyle -} \: p_{\mathsf{slow}}$

Summary

- Clean K^+K^- central-production sample
- PWA result similar to WA102
- Mass dependence can be described by model with three *S*⁻₀ and two *D*⁻₀ Breit-Wigner resonances
 - Extracted Breit-Wigner parameters mostly comparable to PDG values
- Surprisingly strong signal for $f_0(1370)$
 - $f_0(1370)$ resonance required by observed phase motion

Work in progress

- Simplistic fit model
 - Angular information of the two proton scattering planes not taken into account
 - Mass dependence parametrized by sum of relativistic Breit-Wigners
- *Goal:* combined analysis including $K_s^0 K_s^0$, $\pi^+\pi^-$, $\pi^0\pi^0$, and $\eta\eta$

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Baryon Spectroscopy

Search for

- "Missing" states
- Gluonic excitations (hybrids)

Worldwide experimental program

- ELSA, JLab, MAMI, J-PARC
- Excitation of baryon resonances using low-energy pion and photon beams
 - E.g. $\gamma + N \rightarrow N + \pi$, $\pi\pi$, $\pi\pi\pi$, η , $\pi\eta$, $\pi\omega$, $\eta\eta$, ...
- "Complete experiment"
 - Polarized beam *and* target + measurement of recoil polarization
 - 8 carefully selected double/single-spin observables
 - Well-defined quantum numbers of initial and final state
 - Unambiguous determination of scattering amplitude

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Baryon Spectroscopy

Search for

- "Missing" states
- Gluonic excitations (hybrids)

Worldwide experimental program

- ELSA, JLab, MAMI, J-PARC
- Excitation of baryon resonances using low-energy pion and photon beams
 - E.g. $\gamma + N \rightarrow N + \pi$, $\pi\pi$, $\pi\pi\pi$, η , $\pi\eta$, $\pi\omega$, $\eta\eta$, ...
- "Complete experiment"
 - Polarized beam and target + measurement of recoil polarization
 - 8 carefully selected double/single-spin observables
 - Well-defined quantum numbers of initial and final state
 - Unambiguous determination of scattering amplitude
Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

33/42

Baryon Spectroscopy in Proton Diffraction

- Large data set with 190 GeV/*c* positive hadron beam on liquid hydrogen target in kinematic range $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- Diffractive dissociation of beam *p* into various final states:
 - *pπ*⁰, *pη*, *pη'*, *pω*
 - $p\pi^{+}\pi^{-}$, $p\pi^{0}\pi^{0}$, $pK^{+}K^{-}$, $pK_{s}^{0}\overline{K}_{s}^{0}$, $p\eta\eta$
 - . . .
- Unpolarized beam and target; recoil polarization not measured
- *J^P* quantum numbers of initial state not fixed
- Quantization axis = beam direction (Gottfried-Jackson frame)
- $\int^{P} M^{\epsilon}$ of intermediate state X deducible from kinematic distribution of final-state particles

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

33/42

Baryon Spectroscopy in Proton Diffraction

- Large data set with 190 GeV/c positive hadron beam on liquid hydrogen target in kinematic range $0.1 < t' < 1.0 \, (\text{GeV/c})^2$
- Diffractive dissociation of beam *p* into various final states:
 - *pπ*⁰, *pη*, *pη'*, *pω*

•
$$p\pi^+\pi^-$$
, $p\pi^0\pi^0$, pK^+K^- , $pK_s^0\bar{K}_s^0$, $p\eta\eta$

• ...

• Unpolarized beam and target; recoil polarization not measured

- *J*^{*P*} quantum numbers of initial state not fixed
- Quantization axis = beam direction (Gottfried-Jackson frame)
- $\int^{P} M^{\epsilon}$ of intermediate state X deducible from kinematic distribution of final-state particles

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

33/42

Baryon Spectroscopy in Proton Diffraction

- Large data set with 190 GeV/c positive hadron beam on liquid hydrogen target in kinematic range $0.1 < t' < 1.0 \, (\text{GeV/c})^2$
- Diffractive dissociation of beam *p* into various final states:
 - *pπ*⁰, *pη*, *pη'*, *pω*

•
$$p\pi^+\pi^-$$
, $p\pi^0\pi^0$, pK^+K^- , $pK_s^0\overline{K}_s^0$, $p\eta\eta$

- ...
- Unpolarized beam and target; recoil polarization not measured
- *J*^{*P*} quantum numbers of initial state not fixed
- Quantization axis = beam direction (Gottfried-Jackson frame)
- $J^P M^{\epsilon}$ of intermediate state X deducible from kinematic distribution of final-state particles

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

$$pp o p\pi^{_0} \, p_{\mathsf{slow}}$$

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

34/42

 $pp
ightarrow p\pi^0 \, p_{
m slow}$

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

$pp \rightarrow p\pi^+\pi^- p_{\rm slow}$

$\pi^+\pi^-$ subsystem

35/42

Hadron spectroscopy Conclusions and Outlook Baryon spectroscopy in proton diffraction

$pp \rightarrow p\pi^+\pi^- p_{slow}$

Heidelberg Summer School

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

Baryon Spectroscopy in Proton Diffraction

Summary

- Large data sets from *p* diffraction
 - $p\pi^{0}: 8.8 \cdot 10^{6}$ events
 - *pη*: 440 000 events
 - $p\pi^+\pi^-$: more than $50 \cdot 10^6$ events
 - ...
- Interesting structures visible in kinematic distributions
- $\mathbb{P}p$ data complementary to γp and πp data
- Will start with PWA of two-body final states
 - Acceptance correction in preparation
 - Implementation of PWA model started

• Three-body final states require more work on PWA model

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

36/42

Baryon Spectroscopy in Proton Diffraction

Summary

- Large data sets from *p* diffraction
 - $p\pi^{0}: 8.8 \cdot 10^{6}$ events
 - *pη*: 440 000 events
 - $p\pi^+\pi^-$: more than $50 \cdot 10^6$ events
 - ...
- Interesting structures visible in kinematic distributions
- $\mathbb{P}p$ data complementary to γp and πp data
- Will start with PWA of two-body final states
 - Acceptance correction in preparation
 - Implementation of PWA model started

• Three-body final states require more work on PWA model

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production Baryon spectroscopy in proton diffraction

36/42

Baryon Spectroscopy in Proton Diffraction

Summary

- Large data sets from *p* diffraction
 - $p\pi^{0}: 8.8 \cdot 10^{6}$ events
 - *pη*: 440 000 events
 - $p\pi^+\pi^-$: more than $50 \cdot 10^6$ events
 - ...
- Interesting structures visible in kinematic distributions
- $\mathbb{P}p$ data complementary to γp and πp data
- Will start with PWA of two-body final states
 - Acceptance correction in preparation
 - Implementation of PWA model started
- Three-body final states require more work on PWA model

Outline

Introduction

- QCD and constituent quark model
- Beyond the constituent quark model

2 Hadron spectroscopy

- Search for spin-exotic mesons in pion diffraction
- Scalar mesons in central production
- Baryon spectroscopy in proton diffraction

Conclusions and Outlook

COMPASS has acquired large data sets for many reactions

- Diffractive dissociation of p, π^- , and K^- on various targets
- Central production with p and π^- beams on proton target
- $\pi^-\gamma$ and $K^-\gamma$ Primakoff reactions on heavy targets

Main focus: search for mesonic states beyond the CQM

- Huge diffractive π⁻π⁺π⁻ data set: precision spectroscopy of light-quark isovector sector
- Spin-exotic $J^{PC} = 1^{-+}$ signals observed in π^- diffraction
 - $\pi^-\eta$ and $\pi^-\eta'$ channels
 - $\pi^-\pi^+\pi^-$ and $\pi^-\pi^0\pi^0$ final states
 - Resonance interpretation still unclear
- Study of scalar mesons in central production of $\pi\pi$, *KK*, and $\eta\eta$
 - π^- diffraction into $\pi^-\eta\eta$, $\pi^-\pi^+\pi^-\pi^+\pi^-$, $(\pi\pi K\bar{K})^-$,.
 - K^- diffraction into $K^-\pi^+$?
 - Radiative couplings of $a_2(1320)$ and $\pi_2(1670)$

COMPASS has acquired large data sets for many reactions

- Diffractive dissociation of p, π^- , and K^- on various targets
- Central production with p and π^- beams on proton target
- $\pi^-\gamma$ and $K^-\gamma$ Primakoff reactions on heavy targets

Main focus: search for mesonic states beyond the CQM

- Huge diffractive π⁻π⁺π⁻ data set: precision spectroscopy of light-quark isovector sector
- Spin-exotic $J^{PC} = 1^{-+}$ signals observed in π^- diffraction
 - $\pi^-\eta$ and $\pi^-\eta'$ channels
 - $\pi^-\pi^+\pi^-$ and $\pi^-\pi^0\pi^0$ final states
 - Resonance interpretation still unclear
- Study of scalar mesons in central production of $\pi\pi$, $K\overline{K}$, and $\eta\eta$
- Further analyses
 - π^- diffraction into $\pi^-\eta\eta$, $\pi^-\pi^+\pi^-\pi^+\pi^-$, $(\pi\pi K\overline{K})^-$, ...
 - K^- diffraction into $K^-\pi^+\pi$
 - Radiative couplings of $a_2(1320)$ and $\pi_2(1670)$

02-06 September, 2013

COMPASS has acquired large data sets for many reactions

- Diffractive dissociation of p, π^- , and K^- on various targets
- Central production with p and π^- beams on proton target
- $\pi^-\gamma$ and $K^-\gamma$ Primakoff reactions on heavy targets

Main focus: search for mesonic states beyond the CQM

- Huge diffractive π⁻π⁺π⁻ data set: precision spectroscopy of light-quark isovector sector
- Spin-exotic $J^{PC} = 1^{-+}$ signals observed in π^- diffraction
 - $\pi^-\eta$ and $\pi^-\eta'$ channels
 - $\pi^-\pi^+\pi^-$ and $\pi^-\pi^0\pi^0$ final states
 - Resonance interpretation still unclear

• Study of scalar mesons in central production of $\pi\pi$, $K\bar{K}$, and $\eta\eta$

- Further analyses
 - π^- diffraction into $\pi^-\eta\eta$, $\pi^-\pi^+\pi^-\pi^+\pi^-$, $(\pi\pi K\bar{K})^-$, ...
 - K^- diffraction into $K^-\pi^+\pi$
 - Radiative couplings of $a_2(1320)$ and $\pi_2(1670)$

COMPASS has acquired large data sets for many reactions

- Diffractive dissociation of p, π^- , and K^- on various targets
- Central production with p and π^- beams on proton target
- $\pi^-\gamma$ and $K^-\gamma$ Primakoff reactions on heavy targets

Main focus: search for mesonic states beyond the CQM

- Huge diffractive π⁻π⁺π⁻ data set: precision spectroscopy of light-quark isovector sector
- Spin-exotic $J^{PC} = 1^{-+}$ signals observed in π^- diffraction
 - $\pi^-\eta$ and $\pi^-\eta'$ channels
 - $\pi^-\pi^+\pi^-$ and $\pi^-\pi^0\pi^0$ final states
 - Resonance interpretation still unclear
- Study of scalar mesons in central production of $\pi\pi$, $K\bar{K}$, and $\eta\eta$
- Further analyses
 - π^- diffraction into $\pi^-\eta\eta$, $\pi^-\pi^+\pi^-\pi^+\pi^-$, $(\pi\pi K\bar{K})^-$, ...
 - K^- diffraction into $K^-\pi^+\pi^-$
 - Radiative couplings of $a_2(1320)$ and $\pi_2(1670)$

Conclusions and Outlook

Running and upcoming experiments

- VES
- BESIII
- Belle II
- GlueX, CLAS12
- PANDA
- ...

COMAPSS Conclusion

Establish an exotic meson $J^{PC} = 1^{-+}$:

 $\pi_1^-(1600) \to \rho^0 + \pi^-$

consistent with previous publications by BNL E852 and by COMPASS (2004 data).

Final states for PWA:

- $\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^{+}\pi^{-}K^{+}K^{-}$
- $K_S K^{\pm} \pi^{\mp}$, $K_S \to \pi^+ \pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

ALICE: PWA planned for 2-, 4- and 6-body final states

Final states for PWA:

- $\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^{+}\pi^{-}K^{+}K^{-}$
- $K_S K^{\pm} \pi^{\mp}$, $K_S \to \pi^+ \pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

ALICE: PWA planned for 2-, 4- and 6-body final states

Final states for PWA:

- $\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^{+}\pi^{-}K^{+}K^{-}$
- $K_S K^{\pm} \pi^{\mp}$, $K_S \to \pi^+ \pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

ALICE: PWA planned for 2-, 4- and 6-body final states

Final states for PWA:

- $\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^{+}\pi^{-}K^{+}K^{-}$
- $K_S K^{\pm} \pi^{\mp}$, $K_S \to \pi^+ \pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

Final states for PWA:

- $\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^{+}\pi^{-}K^{+}K^{-}$
- $K_S K^{\pm} \pi^{\mp}$, $K_S \rightarrow \pi^+ \pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

Final states for PWA:

- $\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^{+}\pi^{-}K^{+}K^{-}$
- $K_S K^{\pm} \pi^{\mp}$, $K_S \rightarrow \pi^+ \pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

Final states for PWA:

- $\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^{+}\pi^{-}K^{+}K^{-}$
- $K_S K^{\pm} \pi^{\mp}$, $K_S \rightarrow \pi^+ \pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

Final states for PWA:

- $\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^{+}\pi^{-}K^{+}K^{-}$
- $K_S K^{\pm} \pi^{\mp}$, $K_S \rightarrow \pi^+ \pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

Finale

• Lorentz factors for $X^- \rightarrow \rho^0 + \pi^-$ and $\rho^0 \rightarrow \pi^+ \pi^-$:

$$\frac{E_{
ho}}{m_{
ho}} \ge 1$$
 for the $ho(760)$ where $J = \ell = 1$

in the X^- rest frame.

• Reference:

Covariant Helicity-Coupling Amplitudes: A New Formulation, S. U. Chung, BNL/TUM/PNU and Jan Friedrich, TUM Phys. Rev. **D78**, 074027 (2008).

• Thank you

Finale

• Lorentz factors for $X^- \rightarrow \rho^0 + \pi^-$ and $\rho^0 \rightarrow \pi^+ \pi^-$:

$$\frac{E_{\rho}}{m_{\rho}} \ge 1$$
 for the $\rho(760)$ where $J = \ell = 1$

in the X^- rest frame.

• Reference:

Covariant Helicity-Coupling Amplitudes: A New Formulation, S. U. Chung, BNL/TUM/PNU and Jan Friedrich, TUM Phys. Rev. **D78**, 074027 (2008).

Finale

• Lorentz factors for $X^- \rightarrow \rho^0 + \pi^-$ and $\rho^0 \rightarrow \pi^+ \pi^-$:

$$\frac{E_{\rho}}{m_{\rho}} \ge 1$$
 for the $\rho(760)$ where $J = \ell = 1$

in the X^- rest frame.

• Reference:

Covariant Helicity-Coupling Amplitudes: A New Formulation, S. U. Chung, BNL/TUM/PNU and Jan Friedrich, TUM Phys. Rev. **D78**, 074027 (2008).

• Thank you