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Intro

Demonstration of some mathematical methods and ideas for analysis of
high energy diffraction

Especially classification analysis of main pp(p̄)-scattering process classes,
here defined as

σinel , σSDL + σSDR + σDD + σND + (σCD) (1)

Probabilistic classification analysis disintegrates also differential
measurements such as dN/dη, dE/dη into their corresponding classes
(such as dNDD/dη etc.)
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Recap - definition of diffraction

s-channel Good-Walker image where diffraction is understood as an
elastic or quasi-elastic scattering (absorption) of the eigenstates of
proton wave-function

t-channel vacuum object exchange (Pomeron, Regge pole in complex
ang.mom. plane). No color flow. In hard diffraction BFKL/QCD
image of Pomeron as a gluonic ladder exchange.

Several unknowns

What are the eigenstates of soft diffraction (|t| . 0.5 . . . 2 GeV2), how to
treat low-mass dissociation, QCD image of soft diffraction, transition from
soft to hard diffraction, transition between diffraction and non-diffraction
(MPI/underlying event)...
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Traditional LRG analysis

The de-facto kinematical signature of diffraction (coherence)

Search for a gap of ∆η ≥ 3 units (same as ξ = 1− pfz/p
i
z = M2

X/s ≤ 0.05)
by requiring no tracks or energy deposit over some threshold in the given
η-interval.

However, gap can be destroyed e.g. by spectator parton re-scatterings or
by purely experimental reasons (calorimeter noise etc.)

The gap survival probabilities S2 are process dependent, but in general
often estimated to be 〈S2〉 . 0.1

Also, due to random QCD fluctuations (which create ”exponentially
suppressed” LRGs), there is background coming from non-diffractive events

High mass double diffractive events can overlap in rapidity η-space ⇒
experimental signature similar with non-diffractive events
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Multivariate classification analysis
Using multidimensional information embedded in the event topology

Instead of requiring LRGs, vectorize tracking (and calorimetry) information
of an event over the available η-span into a continuous random vector
X ∈ R

d

Estimate event-by-event the probabilities of different processes

posterior ∝ likelihood × prior (2)

Now, assume there is a function fX : Rd → [0,∞) such that there exists
probability

P(X ∈ A) =

∫

A

fX(x) dx, (3)

where A ⊂ R
d is a domain with physically interesting event vector values.

The function fX is known as a density function (likelihood). One must
note that the value fX(x) is not a probability, but the integral over Ω must
be equal to one.
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Posterior ∝ Likelihood × Prior
In this talk likelihood synonymous to density, which is not always the case!

Likelihoods fj
with j = 1, . . . , |C|, (C is a discrete set of scattering processes) encapsulate
the theoretical input about differential cross sections (kinematics ×
dynamics) + hadronization phase (MC) and include experimental detector
effects (calorimeter response, track reconstruction efficiency...) (GEANT)

Priors Pj

encapsulate the theoretical integrated cross sections, e.g. single diffraction

PSD ∝
∫ ∫

dM2
Xdt

d2σSD

dM2
X
dt

(MC) × triggering efficiency (geometrical

acceptance) (GEANT)
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Hard classifier (cut on the output distribution)
g : Rd

→ C

These can be seen as mappings

g : x 7→ {1, 2, . . . , |C|}. (4)

Decision rule mappings g define decision regions as

Rj = {x ∈ R
d : g(x) = (C = j)}, (5)

and thus Rj is the region in R
d where the posterior of class j is the

highest. These decision regions can be defined by affine hyperplanes or in
general, by nonlinear manifolds (or surfaces).

Bayes’ minimum error classifier, optimal in Bayesian sense, does the hard

classification according to

g⋆(x) = argmax
j=1,...,|C|

P(j |x) = argmax
j=1,...,|C|

fj(x)Pj , (6)
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What is the mathematical cost function to optimize?

- S/
√
S + B in a case of traditional cross-section measurement (well

understood background, i.e. 〈B〉 known) etc. assumptions

- S/
√
B when one wants to maximize significance (search for new

resonances etc.)

- Here instead, optimize the total classification accuracy, i.e. try to achieve
Bayes error rate. Theoretically, this lower bound for classification error is
given by

e(g⋆) = 1−
|C|
∑

j=1

∫

Rj

fj(x)Pj dx, (7)

which is always non-zero for a problem with overlapping class densities.

M. Mieskolainen (HIP) Analysis of Diffraction Beyond LRGs 2.9.2013 8 / 20



A concrete algorithm - MLR-ℓ1

Multinomial Logistic Regression with ℓ1-norm regularization, gives
posteriori probabilities through inner products 〈·, ·〉 in R

d between MC
trained weights wj and the event vector x

P(C = j |X = x;w) =
exp(〈wj , x〉)Pj

∑|C|
i=1 exp(〈wi , x〉)Pi

. (8)

”Training” is done with uniform class fractions, and thus we use explicit
priors Pj above. Exponential function guarantees the probabilistic output.
Sparsity regularization allows mathematical variable selection.

Note! By slight abuse of notation w := [wT
1 , . . . ,w

T
|C|]

T
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Concave (-convex) cost function

Formally, conditional ML estimates are obtained by maximizing concave
cost function l : Rd|C| → R

l(w) =

n
∑

j=1

ln P(yj |xj ,w) =

n
∑

j=1





|C|
∑

i=1

y
(i)
j 〈wi , xj 〉 − ln

|C|
∑

i=1

exp(〈wi , xj 〉)



 ,

(9)

where n is the number of (MC) training vectors, yj ∈ {0, 1}|C| encodes
class targets (SD,DD,ND etc.).

With regularization, this is in an augmented functional form

ŵMAP = argmax
w

L(w) = argmax
w

[l(w) + log p(w)] , (10)

and the regularization (prior) distribution is here p(w) ∝ exp(−λ‖w‖ℓ1)
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Training the algorithm

The optimization rule of the ℓ1-regularized cost function is given by
maximizing 1

wT
(

∇(l(ŵ(k))− Bŵ(k)
)

+
1

2
wT (B− λΛ(k))w, (11)

where Λ(k) = diag
(

|ŵ (k)
1 |−1, . . . , |ŵ (k)

d(|C|−1)|−1
)

and the training data is

in B = −1
2 [I− 11T

|C| ]⊗
∑n

j=1 xjx
T
j (⊗ is Kronecker tensor product).

Final training step

The iterative steps 1, 2, . . . , k , . . . , k + 1 of the training/optimization
algorithm are given by

ŵ(k+1) =
(

B− λΛ(k)
)−1 (

Bŵ(k) −∇l(ŵ(k))
)

, (12)

1B. Krishnapuram et al. Sparse Multinomial Logistic Regression, 2005.
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Figure : Regularization λ-paths using MLR-ℓ1 with the MC training sample. On
y -axis the coefficients of wj in order: wi := (blue, green, red, light blue, purple,
yellow), with discrete binning dη = (−3.64,−1.78,−0.88, 0, 0.88, 1.78, 3.64), such
that ηmin,max(wi) ∈ [di , di+1]. Variables are calorimeter deposits integrated over φ.
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Efficiency-Purity inversion
Important post-processing step due to highly non-diagonal confusion matrix!

Define the so-called confusion matrix (with indicator function hI (j ; k) = 1,
if j = k , and 0 otherwise) as

[A]ij , Ex|C=i [hI (g(x); j)] = P(g(x) = j |C = i), (13)

which gives the conditional probability of classifying an event vector
originating from the i -th class to the j-th class.

1 Class-by-class (bin-by-bin) correction factors

2 Confusion matrix A regularized inversion (unfolding)

3 Use event-by-event posteriori probabilities, the most data-driven
method of these!
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Table : Row normalized confusion matrix (4× 4) estimate, with class efficiencies
ǫj and purities πj , and total classification accuracy given by PYTHIA 6.x (with
CDF experiment GEANT4 simulation) and MLR-ℓ1 as a hard classifier.

SDL SDR DD ND ǫj
SDL 0.24 0.02 0.35 0.39 0.24
SDR 0.02 0.23 0.37 0.39 0.23
DD 0.13 0.13 0.43 0.31 0.43
ND 0.00 0.00 0.02 0.98 0.98

πj 0.48 0.47 0.41 0.90 Acc 0.82

One can see how non-diffractive (ND) class dictates the structure of
confusion matrix (due to large cross section)!
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Cross-sections via probabilities
”Soft classification”

It is well-known that conditional expectation values obey the so-called
iterated expectation relation

E[h(X,Y)] = E[E[h(X,Y)|Y]] = E[E[h(X,Y)|X]], (14)

where X,Y are random vectors and h(X,Y) some arbitrary function of
those.

Using this, some previous definitions (and the indicator function hI ), one
can show that integrating (summing) posteriori probabilities over an event
sample size of N results in

σk
σinel

∼= 1

N

N
∑

i=1

E[hI (C ; k)|X = xi ] (15)

=
1

N

N
∑

i=1

|C|
∑

j=1

hI (j ; k)P(j |xi ) � (16)
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Pairwise posteriori probability distributions
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Figure : CDF
√
s = 1.96 TeV 0-bias data, MLR-ℓ1 algorithm, PYTHIA 6.x MC.
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Example of event-by-event probabilistic weighting
Boosted Decision Tree (BDT) is used without any efficiency-purity inversion
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Figure : Monte Carlo vs. multivariate algorithm output with MC input, PYTHIA
6.x MC, CDF experiment GEANT4 chain.
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Other multivariate analysis approaches

Multivariate Regression

f : Rd → R
n (17)

where n ∈ N, often n = 1 (scalar quantity).

Can be used in principle to estimate event-by-event e.g. diffractive
mass(es) M2

X , 4-momentum transfer squared t (or impact parameter b),
even if the LRG is destroyed or no leading proton (Roman pot)
measurement is available

Modern algorithms to do this are e.g. Gaussian Processes (GP) based
(infinite dimensional extensions of 1-hidden layer Neural Nets)
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Binary combinatorial analysis
A simplified, integrated ”toy” approach to classification

Generator level detector combinatorics 2D (here D = 4) simulation using
PYTHIA 8.x (MBR)

√
s = 8 TeV and step-function pT acceptances for

TOTEM T1,T2-detectors. This combinatorics can be seen as a two valued
special case of a real valued vector space with replacement RD → {0, 1}D .

Table : First five signatures out of 24 = 16 possible, class fractions are fj .

ID T2- T1- T1+ T2+ fND fSDL fSDR fDD fCD σi (mb)
0 0 0 0 0 0.00 0.38 0.39 0.17 0.06 3.4417
1 0 0 0 1 0.00 0.00 0.65 0.31 0.03 1.2377
2 0 0 1 0 0.03 0.00 0.46 0.27 0.24 0.4832
3 0 0 1 1 0.04 0.00 0.57 0.36 0.03 3.9924
4 0 1 0 0 0.03 0.46 0.00 0.27 0.24 0.4797

...
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Conclusions

One should do both, traditional LRG based analysis and (probabilistic)
multivariate classification!

Probabilistic multivariate approach can naturally handle the non-unique

experimental signature between diffraction / non-diffraction.

By comparing results of these two kind of measurements, one could obtain
e.g. estimates of gap survival S2 values.

Multivariate methods allow testing the MC models against data in a
mathematically consistent way.
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