Review of TOTEM Results

Mario Deile on behalf of the TOTEM Collaboration

WE-Heraeus-Summerschool

Diffractive and electromagnetic processes at high energies

Heidelberg, September 2 - 6, 2013

Outline

- The TOTEM Experiment at the LHC: Physics objectives and detector apparatus
- 2. Results:
 - a. Elastic pp Scattering
 - b. Inelastic and Total Cross-Sections
 - c. Diffraction
 - d. Forward particle production: pseudorapidity distribution
- 3. Consolidation and Upgrade Plans

The TOTEM Experiment at the LHC

TOTEM Physics Overview

Experimental Setup at IP5

TOTEM

[Ref.: JINST 3 (2008) S08007]

Roman Pots: elastic & diffractive protons close to outgoing beams -> Proton Trigger

Experimental Setup: T1

Experimental Setup: T2

Roman Pots

Roman Pot = movable box inside the beam pipe, housing silicon detectors. Detectors can approach the beam centre to < 1mm when the beams are stable.

Roman Pot Detector Packages

Stack of 10 silicon

(5 pairs back to back)

strip detectors

from cut edge)

TOTEM

Detector housing

Hybrid board with silicon detector and read-out chips

VFAT chips "edgeless" silicon sensor (full efficiency at ~ 50 μ m cut edg

Mario Deile -

p. 9

Proton Transport and Reconstruction via Beam Optics

Transport matrix elements depend on $\xi \rightarrow$ non-linear problem (except in elastic case!) **Excellent optics understanding needed.**

Different LHC Optics

Hit maps of simulated diffractive events for 2 optics configurations

(labelled by β^* = betatron function at the interaction point)

 $\beta^* = 0.55 \text{ m} (\text{low } \beta^* = \text{standard at LHC})$

 $L_x = 1.7 \text{ m}, L_y = 14 \text{ m}, D_x = 8 \text{ cm}$ diffractive protons: mainly in **horizontal** RP elastic protons: in vertical RP near x ~ 0 sensitivity only for large scattering angles $\beta^* = 90 \text{ m}$ (special development for RP runs)

 $L_x = 0, L_y = 260 \text{ m}, v_y = 0, D_x = 4 \text{ cm}$ diffractive protons: mainly in **vertical** RP elastic protons: in narrow band at $x \approx 0$, sensitivity for small vertical scattering angles

 $\beta^* \sim 0.5 - 3.5 \text{ m}$ $\beta^* = 90 \text{ m}$ Beam width @ vertex $\sigma_{x,y}^* = \sqrt{\frac{\varepsilon_n \beta^*}{\gamma}} \quad \text{small}$ Angular beam divergence $\sigma(\Theta_{x,y}^*) = \sqrt{\frac{\varepsilon_n}{\beta^* \gamma}} \quad \text{large}$ $\sigma(\Theta_{x,y}^*) = \sqrt{\frac{\varepsilon_n}{\beta^* \gamma}} \quad \text{small}$ $|t_{\min}| = \frac{n_{\sigma}^2 p \varepsilon_n m_p}{\beta^*} \quad \sim 0.3 - 1 \text{ GeV}^2$ $|t_{\min}| = \frac{n_{\sigma}^2 p \varepsilon_n m_p}{\beta^*} \quad \sim 10^{-2} \text{ GeV}^2$

LHC Optics and TOTEM Running Scenario

Acceptance for diffractive protons:

 $t \approx -p^2 \Theta^{*2}$: four-momentum transfer squared; $\xi = \Delta p/p$: fractional momentum loss

Diffraction: $\xi > \sim 0.01$ low cross-section processes (hard diffraction) Elastic scattering: large |t|

Diffraction: all ξ if $|t| > \sim 10^{-2} \text{ GeV}^2$ Elastic scattering: low to mid |t|Total Cross-Section Elastic scattering: very low |t| Coulomb-Nuclear Interference Total Cross-Section

Beam-Based Roman Pot Alignment (Scraping) Standard Procedure for LHC Collimators

When both top and bottom pots are touching the beam edge:

- they are at the same number of sigmas from the beam centre as the collimator
- the beam centre is exactly in the middle between top and bottom pot
- \rightarrow Alignment of the RP windows relative to the beam (~ 20 μ m)

Software Alignment

Track-Based Alignment

Residual-based alignment technique: shifts and rotations within a RP unit

Important: overlap between horizontal and vertical detectors !

Alignment Exploiting Symmetries of Hit Profiles

 \rightarrow Fine horizontal alignment: precision better than 10 μ m

pp Elastic Scattering 7 TeV 8 TeV

Elastic scattering – from ISR to Tevatron

Diffractive minimum: analogous to Fraunhofer diffraction:

- PROTON-PROTON ELASTIC SCATTERING
- exponential slope B at low |t| increases
- minimum or shoulder moves to lower |t| with increasing s
 - \rightarrow interaction region grows (as also seen from σ_{tot})
- depth of minimum changes
 → shape of proton profile changes
- depth of minimum differs between pp, p⁻p
 → different mix of processes

 $|t| \approx p^2 \theta^2$

Elastic Scattering: Data Collection

Elastic pp Scattering: Event Topology and Hit Maps

Sector 45 (220m)

β*=**3.5**m

RP @ 7σ

Horizontal

Bottom

Top _

Far

Mario Deile p. 18

Elastic Tagging

Example: elastic collinearity : Scattering angle on one side versus the opposite side

Width of correlation band in agreement with beam divergence (~ 2.4 μ rad)

Elastic pp Scattering at 7 and 8 TeV: Differential Cross-Sections

 $\sqrt{s} = 7 \,\mathrm{TeV}$

 $\sqrt{s} = 8 \,\mathrm{TeV}$

Model Comparisons

No theoretical / phenomenological model describes the TOTEM data completely.

Some Lessons on Hadronic Elastic pp Scattering

Inelastic and Total pp Cross-Section Measurements 7 TeV 8 TeV

First measurements of the total proton-proton cross section at the LHC energy of $\sqrt{s} = 7$ TeV [EPL 96 (2011) 21002]

Measurement of proton-proton elastic scattering and total cross-section at $\sqrt{s} = 7$ TeV [EPL 101 (2013) 21002]

Measurement of proton-proton inelastic scattering cross-section at $\sqrt{s} = 7$ TeV [EPL 101 (2013) 21003]

Luminosity-independent measurements of total, elastic and inelastic cross-sections at $\sqrt{s} = 7$ TeV [EPL 101 (2013) 21004]

A luminosity-independent measurement of the proton-proton total cross-section at $\sqrt{s} = 8$ TeV [Phys. Rev. Lett. 111, 012001 (2013)]

Total pp Cross-Section: Status before TOTEM

[COMPETE: J. Cudell et al., PRL 89 (2002) 201801]

3 Ways to the Total Cross-Section

Excellent agreement between cross-section measurements at 7 TeV using

- runs with different bunch intensities,
- different methods with different external inputs.

Inelastic Cross-Section Measurement

7 TeV

T2 sees ~95 % of inelastic events (detection of 1 track is enough!)

Corrections to the T2 visible events

 Trigger Inefficiency: (measured from zero bias data with respect to track multiplicity) 	2.3 ± 0.7 %
 Track reconstruction efficiency: (based on MC tuned with data) 	1.0 ± 0.5 %
 Beam-gas background: (measured with non colliding bunch data) 	0.6 ± 0.4%
 Pile-up (µ =0.03): (contribution measured from zero bias data) 	1.5 ± 0.4%

 $\sigma_{inelastic,\,T2\,visible}$ = 69.7 \pm 0.1 (stat) \pm 0.7 (syst) \pm 2.8 (lumi) mb

- Central Diffraction: T1 & T2 empty : (based on MC) T2 T1 T1 T2 T1 T1 T2 $0.0 \pm 0.35 \%$
- Low Mass Diffraction : σ_{Mx < 3.4 GeV} = 3.2 ± 1.6 mb → 4.2 ± 2.1 % (Several models studied, correction based on QGSJET-II-3)

Mario Deile -

Low-Mass Diffraction

Correction based on QGSJET-II-3

Correction for the low mass diffractive cross-section:

n: $\sigma_{Mx < 3.4 \text{ GeV}} = 3.2 \pm 1.6 \text{ mb}$

 $\sigma_{\text{inelastic}}$ = 73.7 ± 0.1^(stat) ± 1.7^(syst) ± 2.9^(lumi) mb

Estimate of the Low-Mass Diffractive Cross-Section from the Data

7 TeV

Use the total cross-section determined from elastic observables, \mathcal{L} and ρ (via the Optical Theorem)

 $\sigma_{\text{tot}}^2 = \frac{16\pi}{1+\varrho^2} \left. \frac{1}{\mathcal{L}} \left. \frac{dN_{\text{el}}}{dt} \right|_0 \qquad \Rightarrow \quad \sigma_{\text{inel}} = \sigma_{\text{tot}} - \sigma_{\text{el}} = 73.15 \pm 1.26 \text{ mb}$

and the measured inelastic cross-section for $|\eta| < 6.5$ (T1, T2)

 $\sigma_{inel, \ |\eta| \, < \, 6.5} = 70.53 \pm 2.93 \ mb$

to obtain the low-mass diffractive cross-section ($|\eta| > 6.5$ or M < 3.4 GeV): $\sigma_{\text{inel, }|\eta| > 6.5} = \sigma_{\text{inel}} - \sigma_{\text{inel, }|\eta| < 6.5} = 2.62 \pm 2.17 \text{ mb}$ [MC: 3.2 mb] < 6.31 mb (95% CL)

pp Cross-Section Measurements

Elastic to Total Cross-Section Ratio

Interference between Hadronic and Coulomb Elastic pp Scattering

Elastic Scattering in the Coulomb-Nuclear Interference Region

Measure elastic scattering at |t| as low as 6 x 10⁻⁴ GeV²:

- $\beta^* = 1000$ m optics: large effective lengths L_x and L_y , small beam divergence
- \bullet RP approach to 3 σ from the beam centre

 $d\sigma / dt \propto |F^{C+h}|^2$ = Coulomb + interference + hadronic

Elastic Scattering in the Coulomb-Nuclear Interference Region

$d\sigma$ / $dt \propto |F^{C+H}|^2$ = Coulomb + interference + hadronic

Preliminary Result for ρ

Put unknown elements of the functional form into the systematic uncertainty.

Synopsis of *ρ* **Measurements**

Indirect crude measurement at 7 TeV:

From optical theorem:

$$\rho^{2} = 16\pi \mathcal{L}_{int} \frac{\frac{dN_{el}}{dt}}{(N_{el} + N_{inel})^{2}} - 1 = 0.009 \pm 0.056 \quad \Rightarrow |\rho| = 0.145 \pm 0.091$$
Mario Deile –

p. 36

Ongoing Analyses of Diffractive Processes: Standalone and Common Runs with CMS

- A Selection -

Central Diffraction (CD), $\approx 1 \text{ mb}$

 \rightarrow Measure topologies and σ (M, ξ ,t)

Mario Deile – p. 37

Soft Single Diffraction (SD)

SD Topologies for Different Mass Ranges

M =	$2 \times 10^{-7} < \xi < 1 \times 10^{-6}$	proton & opposite T2	T
3.4 – 7 GeV		RPs RPs RPs	
M =	$1 imes 10^{-6} < \xi < 2.5 imes 10^{-3}$	proton & opposite T1 + T2	
7 – 350 GeV		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\ln \frac{M^2}{M}$
M =	$2.5 imes 10^{-3} < \xi < 2.5 imes 10^{-2}$	proton & opposite T2 (+ T1) & same side T1 $\Box \eta^{-1}$	- III S
0.35 – 1.1 TeV		RPs RPs RPs RPs RPs RPs RPs RPs	
M > 1.1 TeV	$\xi > 2.5 \times 10^{-2}$	proton & opposite T2 $(+T1)$ & same side T2 $(+T1)$	
		RPs RPs RPs Mario Deile	- n 39

SD for Different Mass Ranges (7 TeV Data)

M = 3.4 – 7 GeV	$2 \times 10^{-7} < \xi < 1 \times 10^{-6}$	$B_{SD} = 10.1 \text{ GeV}^{-2}$	Work in p
M = 7 – 350 GeV	$1 \times 10^{-6} < \xi < 2.5 \times 10^{-3}$	$B_{SD} = 8.5 \text{ GeV}^{-2}$	Some corr still missin estimated u δB/B ~15 %
M = 0.35 – 1.1 TeV	$2.5 \times 10^{-3} < \xi < 2.5 \times 10^{-2}$	$B_{SD} = 6.8 \text{ GeV}^{-2}$	
M > 1.1 TeV	$\xi > 2.5 \times 10^{-2}$	in progress	Mario I

ogress! ections g !

ncertainty: ó

SD Cross-Section Measurements

very preliminary TOTEM result: $\sigma_{SD} = 6.5 \pm 1.3 \text{ mb} (3.4 < M_{diff} < 1100 \text{ GeV})$ (sum of cross-sections for proton on either side, extrapolated to t=0 and integrated) Estimate on M < 3.4 GeV from $\sigma_{tot} - \sigma_{el} - \sigma_{inel,visible} \sim 2.6 \pm 2.2 \text{ mb}$, or MC: 3.2 mb

NB: Very different mass ranges \rightarrow results not directly comparable

Soft Double Diffraction

Difficulties:

- no leading protons to tag
- for large masses (\rightarrow small central gap) not easy to separate from non-diffractive events

First step: sub-range with particles triggering both T2 hemispheres, veto on T1:

4.7 < $|\xi|_{min,1/2}$ < 6.5 or 3.4 GeV < M_{1/2} < 8 GeV

Partial 2-dim. cross-section in 2 x 2 bins:

	-4.7>η _{min2} -5.9	$-5.9 > \eta_{min} \ge -6.5$
4.7<η _{min} ≨5.9	65±20 μb	26±5 µb
5.9<η _{min} ≨6.5	27±5 μb	12±5 µb

Sum:

$$\sigma_{DD(4.7 < |\eta_{\min}| < 6.5)} = 116 \pm 25 \ \mu b$$

[CERN-PH-EP-2013-170] NEW!

Leading systematics:

- missing DD events with unseen particles at $\eta < \eta_{min}$
- backgrounds from non-diffractive, single diffractive, central diffractive events

So far, only a small part of DD measured: $116 \mu b$ out of $\sim 5 mb$, but: benchmark for Monte Carlos: Pythia 8:

 $\sigma_{DD(4.7 < |\eta_{\min}| < 6.5)} = 159 \ \mu b$

Phojet:

$$\sigma_{DD(4.7 < |\eta_{\min}| < 6.5)} = 101 \ \mu b$$

Improvement expected with 8 TeV data: also CMS detector information available *(joint run).*

Central Diffraction ("Double Pomeron Exchange")

Central Diffraction ("Double Pomeron Exchange")

Soft DPE: study differential cross-section with correlations: (in progress: $d\sigma/dM$, $d\sigma dt_1$) $d^5\sigma$ $d\xi_1 d\xi_2 dt_1 dt_2 d\Delta\Phi$

Single arm CD event rate (integrated ξ , acceptance corrected)

Estimate on the integral: $\sigma_{CD} \sim 1 \text{ mb}$

Central Production of Particles or Di-Jets

Exclusive Particle Production:

$$\mathbf{M_X}^2 = \xi_1 \ \xi_2 \ \mathbf{s}$$
$$y_{\mathbf{X}} = \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$$

exchange of colour singlets with vacuum quantum numbers

⇒ Selection rules for system X: $J^{PC} = 0^{++}$ (mainly) → X = χ_{c0} , χ_{b0} , H, glueballs?

(Exclusive) Dijet Production:

Joint analysis of special run at 8 TeV, $\beta^* = 90$ m together with CMS in progress

Forward Particle Production:

Charged Particle Multiplicity

Charged Particle Pseudorapidity Density dN / dn

 $dN_{cb}/d\eta$: mean number of charged particles per event and per unit of pseudorapidity: primary particles only, i.e. lifetime > 30 ps (convention among LHC experiments)

 \rightarrow probes hadronisation \rightarrow constrains theoretical models

 \rightarrow input for cosmic ray simulations

7 TeV

ηI

p. 48

TOTEM

CMS + TOTEM (T2)

dN / dn for Different Event Classes

TOTEM

"Non-Single diffractive enhanced": primary tracks in both T2 hemispheres "Single diffractive enhanced": primary tracks in only one T2 hemispheres

NSD-enhanced CMS & TOTEM Preliminary NSD-enhanced pp. /s = 8 TeV dN_{ch}/d|ŋ| At least 1 charged particle Pvthia6 Z2' Pythia8 4C with $p_T > 40$ MeV in only one 3.5 Herwig++ EE3C Epos (LHC-Tune) T2 hemisphere EPOS LHC QGSJetII-04 ⊖Pythia 8.108 (4C-Tune) •TOTEM Data (8 TeV) Corrections & correlated systematics between CMS 2.5 & TOTEM under study CMS (p_>100 MeV) TOTEM (p_>40 MeV) 1.5 N_{ch} (p_ > 40 MeV) \geq 1 in 5.3 < η < 6.5 and -6.5 < η < -5.3 Data / MC 1.2 0.5 0.8 5.4 5.6 5.8 6.2 6 6.4 m μl

Updated analysis with a common $p_T = 0$ threshold ongoing in both CMS & TOTEM !

SD-enhanced

Outlook:

The TOTEM Consolidation and Upgrade Programme

Consolidation and Upgrade

In 2012: successful data taking together with CMS in special runs

 \rightarrow first studies of central production, diffractive dijets, other hard diffractive processes

Problems: limited statistics, pileup

 \rightarrow upgrade RP system for operation at higher luminosities

 \rightarrow resolve event pileup: timing measurement, multi-track resolution

Backup

Optics Corrections from Data

• Optics defined by the magnetic lattice elements T_i between IP5 and RP:

$$\begin{pmatrix} x \\ \Theta_x \\ y \\ \Theta_y \end{pmatrix}_{RP} = \mathbf{T} \begin{pmatrix} x \\ \Theta_x^* \\ y^* \\ \Theta_y^* \end{pmatrix}_{IP5}$$

(*)

 (\ldots)

$$\mathbf{T} = \prod_{i=M}^{1} [\mathbf{T}_{i}(k_{i}) + \Delta \mathbf{T}_{i}] = \begin{pmatrix} v_{x} & L_{x} & re_{13} & re_{14} \\ \frac{dv_{x}}{ds} & \frac{dL_{x}}{ds} & re_{23} & re_{24} \\ re_{31} & re_{32} & v_{y} & L_{y} \\ re_{41} & re_{42} & \frac{dv_{y}}{ds} & \frac{dL_{y}}{ds} \end{pmatrix}$$

- Magnet currents are continuously measured, but tolerances and imperfections lead to ΔT_i
 - o Beam momentum offset ($\Delta p/p = 10^{-3}$)
 - Magnet transfer function error, $I \rightarrow B$, ($\Delta B/B = 10^{-3}$)
 - Magnet rotations and displacements ($\Delta \psi < 1$ mrad, Δx , $\Delta y < 0.5$ mm, WISE database)
 - Power converter errors, $k \rightarrow I$, ($\Delta I/I < 10^{-4}$)
 - Magnet harmonics ($\Delta B/B = O(10^{-4})$ @ R_{ref} = 17mm, WISE database)
- The elements of **T** are correlated and cannot take arbitrary values
- The TOTEM RP measurements provide additional constraints:
 - o single-beam constraints (position-angle correlations, x-y coupling)
 - o two-beam constraints via elastic scattering (Θ^*_{left} vs. Θ^*_{right})
- \rightarrow Matching by a fit with 26 parameters (magnet strengths, rotations, beam energy) and 36 constraints.
- → Error propagation to relevant optical functions L_y (1%) and dL_x/ds (0.7%) $\Rightarrow \delta t / t \sim 0.8 2.6$ %

H. Niewiadomski, F. Nemes: "LHC Optics Determination with Proton Tracks Measured in the Roman Pots Detectors of the TOTEM Experiment", IPAC'12, Louisiana, USA, 20-25.05.2012; arXiv:1206.3058 [physics.acc-ph]

H. Niewiadomski: "Roman Pots for beam diagnostics", Optics Measurements, Corrections and Modelling for High-Performance Storage Rings workshop (OMCM) CERN, 20-23.06.2011.

Performance of Optics Corrections

- Generate 1000 perturbed machines with imperfections ΔT_i within tolerances
- \rightarrow determine deviations in optical functions from their design values
- Generate physics events, track the protons through the imperfect machines \rightarrow simulated RP measurements
- Perform the optics reconstruction fit using the constraints from the simulated RP measurements
- \rightarrow compare reconstructed and true (perturbed) optical functions

Analysis Overview I

Background subtraction

Acceptance correction

> Mario Deile p. 56

150

 ϑ_{u}^{*}

Analysis Overview II

Unfolding of resolution effects

Efficiency (→ normalisation)

Trigger Efficiency (from zero-bias data stream) DAQ Efficiency Reconstruction Efficiency – intrinsic detector inefficiency:

- elastic proton lost due to interaction:
- event lost due to overlap with beam halo, depends on RP position

 \rightarrow advantage from 3 data sets, 2 diagonals

> 99.8% (68% CL) (98.142 ± 0.001) %

1.5 – 3 % / pot 1.5% / pot

4-8%

Absolute Luminosity Calibration

$$\mathcal{L} = \frac{(1+\rho^2)}{16\pi} \frac{(N_{el}+N_{inel})^2}{(dN_{el}/dt)_{t=0}}$$

7 TeV

June 2011: $\mathcal{L}_{int} = (1.65 \pm 0.07) \,\mu b^{-1}$ [CMS: $(1.65 \pm 0.07) \,\mu b^{-1}$] October 2011: $\mathcal{L}_{int} = (83.7 \pm 3.2) \,\mu b^{-1}$ [CMS: $(82.0 \pm 3.3) \,\mu b^{-1}$]

Excellent agreement with CMS luminosity measurement.

Absolute luminosity calibration for T2

Beam Cleaning with Primary Collimators (TCPs)

1. Scrape the beam with TCP at 2 σ

2. Retract TCP from 2 σ to 2.5 $\sigma \rightarrow$ gap of 0.5 σ

RP at 3 σ is protected by the gap

Roman Pot

TCP Scatter products from TCP edge hit the RP **Roman Pot**

3. Gap refills within ~ 1h

Data Taking Periods as Seen by T2 and Roman Pots

Hard Diffraction with CMS in 2012

July 2012: $\beta^* = 90 \text{ m}, \sqrt{s} = 8 \text{ TeV}$:

mixed trigger:

CMS [dijet(20GeV) .or. di-muon .or. zero-bias] .or. TOTEM [T2 .or. RP double-arm]

Study dijets in central diffraction:

Compare ξ_1, ξ_2 from RPs and from CMS : kinematics of final state over-constrained

Analysis in progress

Charged Particle Pseudorapidity Density dN / dη

Analyses in progress:

- T1 measurement at 7 TeV $(3.1 < |\eta| < 4.7)$
- Parasitical collision at β* = 90 m (7 July 2012)
 → vertex at ~11m → shifted η acceptance:

$dN_{ch}/d\eta$ in T2: Analysis Highlights

Data sample:

events at low luminosity and low pile-up, triggered with T2 ($5.3 < |\eta| < 6.5$)

Selection:

at least one track reconstructed in T2

Primary particle definition:

charged particle with $t > 0.3 \times 10^{-10}$ s, $p_T > 40$ MeV/c

Primary particle selection:

-primary/secondary discrimination, data-driven based on reconstructed track parameters (Z_{Impact})

Primary track reconstruction efficiency:

- evaluated as a function of the track η and multiplicity
- efficiency of 80%
- fraction of primary tracks within the cuts of 75% 90% (η dependent)

Un-folding of (η) resolution effects:

MC driven bin "migration" corrections

Systematic uncertainties (< 10%):

dominated by primary track efficiency and global alignment correction uncertainty

Joint Data Taking with CMS

Realisation of common running much earlier than ever anticipated

- 1. Hardware: fast electrical trigger cable from RP220 to CMS
 - \rightarrow trigger within CMS latency
- 2. Trigger Logic: bi-directional level-1 exchange \rightarrow same events taken
- 3. Synchronisation: orbit number and bunch number in data streams
- 4. Offline:
 - common repository for independently reconstructed data
 - merging procedure \rightarrow common n-tuples

Consolidation and Upgrade

In 2012: successful data taking together with CMS in special runs

 \rightarrow first studies of central production, diffractive dijets, other hard diffractive processes

Problems: limited statistics, pileup

 \rightarrow upgrade RP system for operation at higher luminosities

 \rightarrow resolve event pileup: timing measurement, multi-track resolution

