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The TOTEM Experiment at the LHC 

IP1: ATLAS, 
  LHCf 

IP2: ALICE 

IP8: LHCb 

IP5: CMS, 
       TOTEM 

IP7: Betatron Cleaning 

IP3: Momentum 
  Cleaning 

IP6: Beam Dump 

IP4: RF (Acceleration) 

p. 3 Mario Deile – 



Total pp cross-section 

Elastic pp scattering 

b 

Diffraction: soft and hard 

Proton 

understand    
QCD nature 

Forward particle production 
 cosmic ray connection 

over a wide 
 t-range 

TOTEM Physics Overview 
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IP5 

RP220 

Roman Pots: elastic & diffractive protons close to outgoing beams  Proton Trigger 

Inelastic Telescopes:  
charged particles in inelastic events:  
 multiplicities, rapidity gaps 

IP5 

T1: 3.1 < |η| < 4.7 ,  pT > 100 MeV   
T2: 5.3 < |η| < 6.5 ,  pT > 40 MeV 
               Inelastic Trigger 

~ 10 m 
~ 14 m T1     CASTOR (CMS) 

   HF 
(CMS) 

T2 

Experimental Setup at IP5 
[Ref.: JINST 3 (2008) S08007] 
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IP5 
~ 10 m 

T1 
   HF 
(CMS) 

Experimental Setup: T1 
• telescope of 5 planes on each side of IP5 
• 3.1 < |η| < 4.7 
• installed inside CMS end-caps in front of HF 
• Cathode Strip Chambers (CSC) with 
  3 read-out coordinates: 
  anode wires (1 projection),  
  cathode strips (2 projections) 
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IP5 
~ 14 m     CASTOR (CMS) 

T2 

Experimental Setup: T2 
• telescope of 10 planes on each side of IP5 
• 5.3 < |η| < 6.5 
• installed inside CMS shield between HF & Castor 
• Gas Electron Multipliers (GEM): 
  radial segmentation: concentric strips 
  coarse radial & azimuthal segmentation: pads 
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Roman Pots 

Package of 10 “edgeless” Si-detectors 

           Horizontal Pot            Vertical Pot    

Roman Pot = movable box inside the beam pipe, housing silicon detectors. 
Detectors can approach the beam centre to  < 1mm when the beams are stable. 

IP5 

RP220 

p. 8 Mario Deile – 



Roman Pot Detector Packages 

Stack of 10 silicon 
strip detectors 
(5 pairs back to back) 

Hybrid board with silicon detector and 
read-out chips 

Detector housing 

“edgeless” silicon sensor 
(full efficiency at ~ 50 µm 
from cut edge) 

Beam 
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Proton Transport and Reconstruction via Beam Optics 

(x*, y*):    vertex position 
(θx

*, θy
*): emission angle:     t ≈ −p2 (θx

∗ 2 + θy
∗ 2) 

ξ = ∆p/p: momentum loss (elastic case: ξ = 0) 

RP IP5 

Measured in RP Values at IP5 to be reconstructed 

Excellent optics understanding needed. 

Reconstruction of proton kinematics = inversion of transport equation 
Transport matrix elements depend on ξ  non-linear problem (except in elastic case!) 

Product of all lattice element matrices 

* *
RP y y yy L v y= Θ +

* *
RP x x x xx L v x D ξ= Θ + + Lx, Ly:    effective lengths (sensitivity to scattering angle) 

vx, vy:     magnifications    (sensitivity to vertex position) 
Dx :         dispersion (sensitivity to momentum loss); Dy ~ 0 
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Different LHC Optics 
Hit maps of simulated diffractive events for 2 optics configurations 

(labelled by β* = betatron function at the interaction point)  
β* = 0.55 m  (low β* = standard at LHC) β* = 90 m  (special development for RP runs) 

Lx = 1.7 m, Ly = 14 m, Dx = 8 cm 
diffractive protons: mainly in horizontal RP 
elastic protons: in vertical RP near x ~ 0 
sensitivity only for large scattering angles 

Lx = 0, Ly = 260 m, vy = 0, Dx = 4 cm 
diffractive protons: mainly in vertical RP 
elastic protons: in narrow band at x ≅ 0, 
sensitivity for small vertical scattering angles 
 Beam width @ vertex Angular beam divergence Min. reachable |t| 

β* ~ 0.5−3.5 m small large ~ 0.3–1 GeV2 

β* = 90 m large small ~ 10−2 GeV2 γ
βεσ

*
*

,
n

yx =
γβ

εσ *
*

, )( n
yx =Θ

*

2

min β
εσ pnmpn

t =
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LHC Optics and TOTEM Running Scenario 
Acceptance for diffractive protons: 

  t ≈ −p2 Θ∗ 2: four-momentum transfer squared; ξ = ∆p/p: fractional momentum loss 

β* = 0.55 m β* = 90 m β* = 1000 m 

Diffraction: 
ξ > ~0.01 
low cross-section processes 
(hard diffraction) 
Elastic scattering:  large |t| 

*

1
β

∝L

Diffraction: 
all ξ if |t| > ∼10−2 GeV2 
Elastic scattering:  low to mid |t| 
Total Cross-Section 

Elastic scattering: very low |t| 
Coulomb-Nuclear Interference 
Total Cross-Section 

> 1033 cm−2 s−1 ~1027 cm−2 s−1 
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Beam-Based Roman Pot Alignment (Scraping) 
Standard Procedure for LHC Collimators 

A primary collimator cuts a sharp  
edge into the beam, symmetrical to  
the centre 

The top RP approaches  
the beam until it  
touches the edge 

The last 10 µm step produces a spike in a  
Beam Loss Monitor downstream of the RP 

When both top and bottom pots are touching the beam edge: 

•  they are at the same number of sigmas  from the beam centre as the collimator 

•  the beam centre is exactly in the middle between top and bottom pot  

  Alignment of the RP windows relative to the beam (~ 20 µm) 

BLM 

10 µm step 
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Bottom 
Pot 

Top Pot 

Software Alignment 

Alignment Exploiting Symmetries of Hit Profiles 

Residual-based alignment technique: 
shifts and rotations within a RP unit 
 
Important: overlap between horizontal and vertical 
detectors ! 

Map of all track intercepts after elastic selection 

 Fine horizontal alignment: precision better than 10 µm 

Fine vertical alignment:  
about 20 µm precision 

Flip  
and shift 

Track-Based Alignment 
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pp Elastic Scattering 
7 TeV 
8 TeV 

p 

p 

θ 

θ 
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~1.4 GeV2 

Diffractive minimum: analogous to Fraunhofer diffraction: 

•  exponential slope B at low |t| increases 
•  minimum or shoulder moves to lower |t| with increasing s 
    interaction region grows (as also seen from σtot) 
•  depth of minimum changes  
    shape of proton profile changes 
•  depth of minimum differs between pp, pˉp 
    different mix of processes 

ISR 

Elastic scattering – from ISR to Tevatron 

|t|≈ p2 θ2 
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, 7 TeV 

          β* = 90 m, 10σ , 7 TeV 

   β* = 3.5 m, 18σ, 7 TeV 

           β* = 3.5 m, 7σ, 7 TeV 

                          β* = 90 m, 5σ, 7 TeV 

                          β* = 11m,  5-13σ, 2.76 TeV 

         β* = 1 km, 3σ , 8 TeV 

Elastic Scattering: Data Collection 

Several data sets at different conditions to measure wide range and very low |t|  

β* = 90 m, 6σ , 8 TeV 

[EPL   95 (2011) 41001] 
[EPL   96 (2011) 21002] 
[EPL 101 (2013) 21002] 
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Two diagonals analysed independently  
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Elastic pp Scattering: Event Topology and Hit Maps  

Hit Maps of a single diagonal (left-right coincidences) 

Sector 56 

Sector 45 

Sector 56 

Aperture limitation, tmax Beam  
halo 

      x [mm]        x [mm]  

   
   

   
 y

 [m
m

]  

   
   

   
 y

 [m
m

]  

t = -p2 θ2 ξ = ∆p/p 

7 x1010 protons per bunch 
Inelastic pile-up ~ 0.8 ev. / bx 

β∗=3.5m                                        β∗=90m                                     β∗=90m 

1.5 x1010 protons per bunch 
Inelastic pile-up ~ 0.005 ev. / bx 

6 x1010 protons per bunch 
Inelastic pile-up ~ 0.03 ev. / bx 

RP @ 7σ                                              RP @ 10σ                                         RP @ 5σ 
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Elastic Tagging 

Width of correlation band in agreement with beam divergence (~ 2.4 µrad) 

Example: elastic collinearity : Scattering angle on one side versus the opposite side 
Collinearity in y Collinearity in x 

low |ξ| 

Selection cuts: 

collinearity 

common vertex for both protons 
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Elastic pp Scattering at 7 and 8 TeV: Differential Cross-Sections 

TeV7=s TeV8=s
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Model Comparisons 

No theoretical / phenomenological model describes the TOTEM data completely. 

TeV7=s
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||
el / tBeAdtd −=σ

|t|dip= 0.53 GeV2 ~ |t|−7.8 

Some Lessons on Hadronic Elastic pp Scattering 

~1.4 GeV2 

ISR 

EPL 101 

At low |t|: nearly exponential decrease: 

          B7TeV = (19.89 ± 0.27) GeV─2 

          B8TeV = (19.90 ± 0.30) GeV─2 
 
Old trends for increasing s are confirmed: 
• “shrinkage of the forward peak”: minimum moves to lower |t| 
• forward exponential slope B increases 

TeV7=s
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Inelastic and Total pp Cross-Section Measurements 
7 TeV 
8 TeV 

First measurements of the total proton-proton cross section at the LHC energy of √s = 7TeV  
[EPL 96 (2011) 21002] 

Measurement of proton-proton elastic scattering and total cross-section at √s = 7 TeV 
[EPL 101 (2013) 21002]  

Measurement of proton-proton inelastic scattering cross-section at √s = 7 TeV 
[EPL 101 (2013) 21003] 

Luminosity-independent measurements of total, elastic and inelastic cross-sections at √s = 7 TeV 
[EPL 101 (2013) 21004] 

A luminosity-independent measurement of the proton-proton total cross-section at √s  = 8 TeV 
[Phys. Rev. Lett. 111, 012001 (2013)] 
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Total pp Cross-Section: Status before TOTEM 

Cosmic Rays 

[COMPETE: J. Cudell et al., PRL 89 (2002) 201801] 

σtot ∝ ln s   ?       ln2 s  ?      sα−1     ? 
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σtot = (98.0 ± 2.5) mb 

3 Ways to the Total Cross-Section 

Excellent agreement between cross-section measurements at 7 TeV using 
- runs with different bunch intensities,  
- different methods with different external inputs. 

(ρ=0.14
  
[COMPETE extrapol.]) 

different beam intensities ! 

June 2011 (EPL96): σtot = (98.3 ±2.8) mb 
Oct. 2011 (EPL101): σtot = (98.6 ±2.2) mb 

σtot = (99.1 ± 4.3) mb 

7 TeV 

Optical Theorem: ( )[ ] ( )
0had el,

had el,2
had el,2

2
had el,

2
tot   with      0

1
10

=
ℑ
ℜ

==
+

==ℑ∝
t
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F
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1
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ρ
πσ
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Corrections to the T2 visible events 

 Trigger Inefficiency:                                      2.3 ± 0.7 % 
    (measured from zero bias data with respect to track multiplicity) 
 

 Track reconstruction efficiency:                                    1.0 ± 0.5 % 
   (based on MC tuned with data) 
 
  Beam-gas background:                                      0.6 ± 0.4% 
    (measured with non colliding bunch data) 
 
  Pile-up (μ =0.03):                                        1.5 ± 0.4%  
   (contribution measured from zero bias data) 

σinelastic, T2 visible = 69.7 ± 0.1 (stat) ± 0.7 (syst) ± 2.8 (lumi)  mb 

Inelastic Cross-Section Measurement 

7 TeV 

T2 sees  ~95 % of inelastic events (detection of 1 track is enough!) 
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σinelastic, T2 visible σinelastic 

Missing inelastic cross-section 

Corrected Inelastic Cross-Section 

  Events visible in T1 but not in T2:                          1.6 ± 0.4 % 
                    (estimated from zero bias data) 

 
 
 

  Fluctuation rapidity gap covering T2 :                                   0.35 ± 0.15 % 
                    (estimated from T1 gap probability transferred to T2) 

 
 
 

  Central Diffraction: T1 & T2 empty :                          0.0 ± 0.35 % 
                    (based on MC) 

 
 

  Low Mass Diffraction :                            4.2 ± 2.1 %   
                    (Several models studied, correction based on QGSJET-II-3)  

T2 T1 T1 T2 

T2 T1 T1 T2 

gap 

T2 T1 T1 T2 

T2 T1 T1 T2 

7 TeV 

σ Mx < 3.4 GeV = 3.2 ± 1.6 mb  
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undetected 
low mass 
contribution 

Correction based on QGSJET-II-3    

Correction  for the low mass diffractive cross-section:     σ Mx < 3.4 GeV = 3.2 ± 1.6 mb  
 

Low-Mass Diffraction 

σinelastic = 73.7 ± 0.1(stat) ± 1.7(syst) ± 2.9(lumi) mb 

7 TeV 
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Use the total cross-section determined from elastic observables, L and ρ  
(via the Optical Theorem) 
 
                                                              σ inel = σ tot – σ el = 73.15 ± 1.26 mb  
 
and the measured inelastic cross-section for |η| < 6.5 (T1, T2) 
                                                                  σinel, |η| < 6.5 = 70.53 ± 2.93 mb  
  
to obtain the low-mass diffractive cross-section (|η| > 6.5 or M < 3.4 GeV): 
 σinel, |η| > 6.5 = σ inel − σinel, |η| < 6.5 = 2.62 ± 2.17 mb        [MC: 3.2 mb] 
                   < 6.31 mb    (95% CL) 

Estimate of the Low-Mass Diffractive Cross-Section from the Data 

7 TeV 

p. 29 Mario Deile – 



pp Cross-Section Measurements 

8 TeV 

7 TeV 

new data available 
at √s = 2.76 TeV 
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independent of luminosity and ρ 

Elastic to Total Cross-Section Ratio  

=
+

=
inelel

el

tot

el

NN
N

σ
σ

σel / σ tot increases with energy 
 

 proton grows / becomes “blacker” 

0.005  0.257 ± 0.006  0.266 ±

7 TeV 8 TeV 

TOTEM pp 
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Interference between  
Hadronic and Coulomb 

Elastic pp Scattering 

γ γ 
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Elastic Scattering in the Coulomb-Nuclear Interference Region 

Measure elastic scattering at |t| as low as 6 x 10−4 GeV2: 
• β* = 1000 m optics: large effective lengths Lx and Ly, small beam divergence 
• RP approach to 3 σ from the beam centre  

dσ / dt ∝ |FC+h|2 = Coulomb + interference + hadronic 

p. 33 Mario Deile – 



Elastic Scattering in the Coulomb-Nuclear Interference Region 

dσ / dt ∝ |FC+H|2 = Coulomb + interference + hadronic 

Kundrát-Lokajíček formula: 

• Modulus constrained by measurement:    dσ/dt ≅ A e-B(t) |t| 

 B(t) = b0 + b1 t + … : described by n > 1 parameters 
• Phase Φ(t) = arg(FH): very little guidance by data 

Only 1 free parameter: p0  

“peripheral phase”: “central phase”: 

? ? 

0cot)0(cot
)0(
)0( p

F
F

H

H

=Φ=
ℑ
ℜ

=ρ

dt
t
p

−
−=Φ

1

cotatan
2

0π
















+−+=Φ 1lnexp0

mm
A t

t
t
tpp κ
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Preliminary Result for ρ 

Put unknown elements of the functional form into the systematic uncertainty. 

σtotal= 101.7 ± 2.9 mb 
luminosity independent 
PRL111(2013)012001 

Phase:           central     central     periph.    periph. 

B(t):                2 par.      3 par.       2 par.      3 par. 

TOTEM preliminary 

had 
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Synopsis of ρ Measurements 

( )
056.0009.01d

d

16 2
inelel

0

el

int
2 ±=−

+
= =

NN
t

N
tLπρ

From optical theorem: 

Indirect crude measurement at 7 TeV: 

|ρ| = 0.145 ± 0.091 
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Ongoing Analyses of Diffractive Processes: 
Standalone and Common Runs with CMS 

 
- A Selection - 

di-jet 
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  Measure topologies and σ (M,ξ,t) 



Soft Single Diffraction (SD) 

•1 proton breaks up 
 diffractive mass M 
•1 proton survives with momentum loss ξ 

•rapidity gap ∆η between proton and M  

sM ξξη =−=∆ 2,ln

2 ways for measuring ξ: 
1. via the proton trajectory (RP): 

 
2. via the rapidity gap (T1, T2) 

Note: ηmax,T2 = 6.5    ⇔     Mmin = 3.4 GeV 
 

Full differential cross-section: 

* *
RP x x x xx L v x D ξ= Θ + +

Trigger on T2, require 1 proton 

resolution at β*=90m: 
δξ ~ 0.004 – 0.01 
(dependent on t, ξ) 

δξ ~ ξ 

tdd
d2

ξ
σ
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SD Topologies for Different Mass Ranges 
M = 
3.4 – 7 GeV 

2 × 10−7 < ξ < 1 × 10−6 proton & opposite T2 

M =  
7 – 350 GeV 

1 × 10−6 < ξ < 2.5 × 10−3 proton & opposite T1 + T2 

M =  
0.35 – 1.1 TeV 

2.5 × 10−3 < ξ < 2.5 × 10−2 

 
proton & opposite T2 (+ T1) & same side T1 

M > 1.1 TeV ξ > 2.5 × 10−2 proton & opposite T2 (+ T1) & same side T2 (+ T1) 

s
M 2

ln−=∆η
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SD for Different Mass Ranges (7 TeV Data) 
M = 
3.4 – 7 GeV 

2 × 10−7 < ξ < 1 × 10−6 

M =  
7 – 350 GeV 

1 × 10−6 < ξ < 2.5 × 10−3 

M =  
0.35 – 1.1 TeV 

2.5 × 10−3 < ξ < 2.5 × 10−2 

 

M > 1.1 TeV ξ > 2.5 × 10−2 in progress 

dσ/dt ~ A·e−B |t| 

BSD = 10.1 GeV−2 

       ≈ ½ Bel   ! 

BSD = 8.5 GeV−2 

BSD = 6.8 GeV−2 

Work in progress ! 
Some corrections 
still missing ! 

estimated uncertainty: 
δB/B ~15 % 
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Courtesy N. Cartiglia 

TOTEM measures: p + rap gap + diffractive system,  
ALICE & CMS: ”rap gap + diffractive system”     
 
NB: Very different mass ranges  results not directly comparable 

SD Cross-Section Measurements 

σSD= 6.5 ± 1.3 mb (3.4 < Mdiff < 1100 GeV) very preliminary TOTEM result: 
(sum of cross-sections for proton on either side, extrapolated to t=0 and integrated) 
Estimate on M < 3.4 GeV from σtot – σel – σinel,visible ~ 2.6 ± 2.2 mb,    or MC: 3.2 mb 

8 TeV TOTEM analysis  
has started. 
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Soft Double Diffraction 

•Both protons break up 
 2 diffractive masses M1, M2 

•Central rapidity gap 

Ultimate goal: 2-dim. cross-section 
2min,1min,

2

21

2

dd
dor       

dd
d

ηη
σσ

MM

|η|min,1 −|η|min,2 

Difficulties: 
• no leading protons to tag 
• for large masses ( small central gap) not easy to separate from non-diffractive events 
 
First step: sub-range with particles triggering both T2 hemispheres, veto on T1: 
                  4.7 < |ξ|min,1/2 < 6.5          or        3.4 GeV < M1/2 < 8 GeV 
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Double Diffraction: Results at 7 TeV 

Partial 2-dim. cross-section in 2 x 2 bins: 

Sum: 2 2 

1 

1 

Leading systematics: 
• missing DD events with unseen particles at η < ηmin  
• backgrounds from non-diffractive, single diffractive, central diffractive events 
 
 

So far, only a small part of DD measured: 116 µb out of ~5 mb, but: 
benchmark for Monte Carlos: 
Pythia 8: 
 
Phojet: 

Improvement expected with 8 TeV data: also CMS detector information available 
(joint run). 

[CERN-PH-EP-2013-170]   NEW! 
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Central Diffraction (“Double Pomeron Exchange”) 

•both protons survive with momentum  
losses ξ1, ξ2 

•diffractive mass M in the centre 
•2 rapidity gaps ∆η1, ∆η2 

sM 21
2

2,12,1 ,ln ξξξη =−=∆

Joint data taking CMS + TOTEM: 
kinematic redundancy between protons and central diffractive system 

MCMS = MTOTEM(pp)  ?  
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Central Diffraction (“Double Pomeron Exchange”) 

∆Φddddd
d

2121

5

ttξξ
σSoft DPE: study differential cross-section with correlations: 

                 (in progress: dσ/dM,    dσ dt1 ) 

Single arm CD event rate (integrated ξ, acceptance corrected) 

fit with dσ/dt ∝ eB t 

Estimate on the integral: 
σCD ~ 1 mb 
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Central Production of Particles or Di-Jets 

Joint analysis of special run at 8 TeV, β* = 90 m together with CMS in progress 

1

2

1 ln
2

y ξ
ξ

=X

MX
2 = ξ1 ξ2 s  

(Exclusive) Dijet Production: 

Exclusive Particle Production: 

X at rapidity yX 

(ξ1) 

(ξ2) 

exchange of colour singlets with vacuum quantum numbers 
 ⇒ Selection rules for system X: JPC = 0++ (mainly)  X = χc0, χb0, H, glueballs? 
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Forward Particle Production: 
 

Charged Particle Multiplicity 
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Charged Particle Pseudorapidity Density dN / dη 

[EPL 98 (2012) 31002] 

dNch/dη : mean number of charged particles per event and per unit of pseudorapidity: 
primary particles only, i.e. lifetime > 30 ps (convention among LHC experiments) 

  probes hadronisation  constrains theoretical models 

  input for cosmic ray simulations  

Corrections & correlated 
systematics between CMS & 
TOTEM  under study 

7 TeV 
TOTEM standalone (T2) 

8 TeV 
CMS + TOTEM (T2) 
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 “Non-Single diffractive enhanced”: primary tracks in both T2 hemispheres 
 “Single diffractive enhanced”: primary tracks in only one T2 hemispheres 

SD-enhanced 

At least 1 charged particle 
with pT>40 MeV in only one 
T2 hemisphere 

TOTEM-Preliminary 

NSD-enhanced 

Corrections & correlated 
systematics between CMS  
& TOTEM  under study 

Updated analysis with a common pT = 0 threshold ongoing in both CMS & TOTEM ! 

dN / dη for Different Event Classes 
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Outlook: 
 

The TOTEM Consolidation and Upgrade Programme 
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Consolidation and Upgrade 

New collimator 
 to protect Q6 

2 new horizontal pots 

RP147 relocated at 203-213m 

Long lever arm (~15m) improves angular resolution 
 
1 unit tilted 8o around beam axis to allow multitrack event 
reconstruction (beam halo pileup, background) 
 
Later: pixel detectors 

timing detectors 

Allow insertion of pots 
at high beam intensity            

In 2012: successful data taking together with CMS in special runs 
 first studies of central production, diffractive dijets, other hard diffractive processes 
Problems: limited statistics, pileup 
upgrade RP system for operation at higher luminosities 
resolve event pileup: timing measurement, multi-track resolution 

existing RP220 
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Backup 
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Optics Corrections from Data 
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•   Optics defined by the magnetic lattice elements Ti between IP5 and RP: 

•    Magnet currents are continuously measured, but tolerances and imperfections lead to ∆Ti 
o   Beam momentum offset (∆p/p = 10-3) 
o   Magnet transfer function error, I→B, (∆B/B = 10-3) 
o   Magnet rotations and displacements (∆ψ < 1mrad, ∆x, ∆y < 0.5mm, WISE database) 
o   Power converter errors, k→I, (∆I/I < 10-4) 
o   Magnet harmonics (∆B/B = O(10-4) @ Rref = 17mm, WISE database) 

•   The elements of T are correlated and cannot take arbitrary values 
•   The TOTEM RP measurements provide additional constraints: 

o   single-beam constraints (position-angle correlations, x-y coupling) 
o   two-beam constraints via elastic scattering (Θ*left vs. Θ*right) 

  Matching by a fit with 26 parameters (magnet strengths, rotations, beam energy) and 36 constraints. 
  Error propagation to relevant optical functions Ly (1%) and dLx/ds (0.7%)       ⇒ δt / t ~ 0.8 – 2.6 % 

with 

H. Niewiadomski: “Roman Pots for beam diagnostics”, Optics Measurements, Corrections and Modelling for High-Performance 
Storage Rings workshop (OMCM) CERN, 20-23.06.2011. 

H. Niewiadomski, F. Nemes: “LHC Optics Determination with Proton Tracks Measured in the Roman Pots Detectors of the 
TOTEM  Experiment”, IPAC'12, Louisiana, USA, 20-25.05.2012; arXiv:1206.3058 [physics.acc-ph] p. 54 Mario Deile – 



Performance of Optics Corrections 

• Generate 1000 perturbed machines with imperfections ∆Ti within tolerances   
  determine deviations in optical functions from their design values 
• Generate physics events, track the protons through the imperfect machines  
  simulated RP measurements 
• Perform the optics reconstruction fit using the constraints from the simulated RP measurements 
  compare reconstructed and true (perturbed) optical functions  
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Background 
subtraction 

Acceptance  
correction 

Analysis Overview I 

+3
σ 

−3
σ 

Use strongest cut (common vertex 
for both protons): 
Interpolation of background  
population from outside 3σ into 
the signal region. 
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Unfolding of resolution effects 

β*=90m 
σ(Θ*)=1.7µrad 

Efficiency  ( normalisation) 
               Trigger Efficiency (from zero-bias data stream)  > 99.8% (68% CL) 

                   DAQ Efficiency     (98.142 ± 0.001) % 

                Reconstruction Efficiency 
                     – intrinsic detector inefficiency:                                               1.5 – 3 % / pot 
                         – elastic proton lost due to interaction:                                    1.5% / pot 
                         – event lost due to overlap with beam halo, 
                            depends on RP position  
                             advantage from 3 data sets, 2 diagonals                         4 – 8 % 

Analysis Overview II 
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Absolute Luminosity Calibration 

June 2011:       Lint = (1.65 ± 0.07) µb−1          [CMS: (1.65 ± 0.07) µb−1] 

October 2011: Lint = (83.7 ± 3.2) µb−1             [CMS: (82.0 ± 3.3) µb−1] 

7 TeV 

Excellent agreement with CMS luminosity measurement. 
 
Absolute luminosity calibration for T2 
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Beam Cleaning with Primary Collimators (TCPs) 

TCP 

Roman Pot 

3. Gap refills within ~ 1h 

Scatter products from   
TCP edge hit the RP 

Roman Pot 

TCP 

2. Retract TCP from 2 σ  
to 2.5 σ  gap of 0.5 σ 

RP at 3 σ is protected  
by the gap 

0.5 σ 

1 σ 

TCP 

1 σ 
contour lines 

1. Scrape the beam with 
TCP at 2 σ  
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Data Taking Periods as Seen by T2 and Roman Pots 

Total: 6.75 h in 6 periods 
int. lumi.: 27 µb-1 

 400k elastic events 

T2 Trigger 
(sees 70 mb inelastic 
cross-section) 
 luminosity candle 

Roman Pot 
Double Arm Trigger 
(Sector 45 AND Sector 56) 
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Hard Diffraction with CMS in 2012 
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Analysis  in progress 

July 2012: β* = 90 m, √s = 8 TeV: 
mixed trigger:   
CMS [dijet(20GeV) .or. di-muon .or.  zero-bias]  .or.  TOTEM  [T2 .or. RP double-arm] 
 
Study dijets in central diffraction: 

M2 = ξ1 ξ2 s 

Compare ξ1, ξ2  from RPs and from CMS :  
kinematics of final state over-constrained  
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Charged Particle Pseudorapidity Density dN / dη 

T2 
[T1] 

Analyses in progress: 
•   T1 measurement at 7 TeV (3.1 < |η| < 4.7) 
 

•    Parasitical collision at β* = 90 m (7 July 2012) 
      vertex at ~11m  shifted η acceptance: 

[EPL 98 (2012) 31002] 

p. 62 Mario Deile – 



primary 

secondary 

Data sample:  
    events at low luminosity and low pile-up, triggered with T2 (5.3 < |η| < 6.5) 
 

Selection: 
    at least one track reconstructed in T2 
 

Primary particle definition:  
    charged particle with t > 0.3×10-10 s, pT > 40 MeV/c 
 

Primary particle selection:  
   -primary/secondary discrimination, data-driven  
     based on reconstructed track parameters (ZImpact)  
 

Primary track reconstruction efficiency:  
    - evaluated as a function of the track η and multiplicity 
    - efficiency of 80% 
    - fraction of primary tracks within the cuts of 75% – 90% (η dependent) 
 

Un-folding of (η) resolution effects: 
     MC driven bin “migration” corrections 
 

Systematic uncertainties (< 10%): 
     dominated by primary track efficiency and global alignment correction uncertainty 
      

dNch/dη in T2: Analysis Highlights 
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Joint Data Taking with CMS 
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Realisation of common running much earlier than ever anticipated 
 
1. Hardware: fast electrical trigger cable from RP220 to CMS  
          trigger within CMS latency 
2. Trigger Logic: bi-directional level-1 exchange  same events taken 
3. Synchronisation: orbit number and bunch number in data streams 
4. Offline: 
    - common repository for independently reconstructed data 
    - merging procedure  common n-tuples 



Consolidation and Upgrade 

4 RP units : 220m                                  215m  214m                                                                           203 m 

New collimator 
 to protect Q6 

2 new horizontal pots RP147 relocated at 203-213m 

Long lever arm (~15m) improves angular resolution 
 
1 unit tilted around beam axis to improve multitrack event 
reconstruction (beam halo pileup, background) 
 
Later: pixel detectors 

timing detectors Allow insertion of pots 
at high beam intensity            

In 2012: successful data taking together with CMS in special runs 
 first studies of central production, diffractive dijets, other hard diffractive processes 
Problems: limited statistics, pileup 
upgrade RP system for operation at higher luminosities 
resolve event pileup: timing measurement, multi-track resolution 
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Classes of pp Events 
≈ 60 mb  @ √s = 7 – 8 TeV 

  Measure topologies and σ (M,ξ,t) 
Substantial fraction of particle and energy flow 
goes forward; often surviving protons. 

2
tanln θη −=
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