Results on Diffractive Physics at LHCb

Ronan McNulty (UCD Dublin) On behalf of the LHCb collaboration

Diffractive and electromagnetic processes at high energies, WE-Heraeus-Summerschool, Heidelberg, Sept 2-6, 2013

Outline

- Theoretical background and motivation
 - Understanding the vacuum
 - Investigating the pomeron
 - Gluon PDF
 - New phenomena
- Experimental Signatures
- The LHCb experiment
- Analysis and Results
 - Central Exclusive $J/\psi, \psi', \chi_{c}, \mu\mu$
- Future plans
 - Υ,Φ,χ,ηη,Χ,searches

Theoretical background and motivation

Understanding QCD

- At hard scales
 - theory perturbative and thus predictive
 - well tested by experiment
 - $\hfill \hfill \hfill$
- At soft scales
 - difficult (impossible?) to predict
 - yet this is where most physics happens
 - describes bound hadrons and nature of vacuum
 - choose your experimental environment carefully and challenge theory
- Open questions
 - colourless objects (pomeron, reggeon, odderon)
 - glueballs
 - QCD must 'break down' at very soft scales (rise of gluon PDF violates unitarity) – there must be new phenomenology like saturation.

σ_{elastic}	≈ 40mb ←
$\sigma_{\text{diffractive}}$	<mark>≈ 10mb</mark>
$\sigma_{inelastic}$	<mark>≈ 60mb</mark>

σ_{elastic}	≈ 40mb ←	
σ _{diffractive}	<mark>≈ 10mb</mark>	
$\sigma_{inelastic}$	<mark>≈ 60mb</mark>	

Physics of the Vacuum

	10mb
O _{diffractive} ~ O _{inelastic} ~	<pre>> 60mb</pre>

in particular, transition between soft and hard pomeron.

≈ 40mb $\sigma_{elastic}$ ≈ 10mb σ_{diffractive} ≈ 60mb $\sigma_{inelastic}$

Elastic diffractive: clean environment to study vacuum, and in particular, transition between soft and hard pomeron.

 $\begin{array}{ll} \sigma_{elastic} & \approx 40 mb \\ \sigma_{diffractive} & \approx 10 mb \\ \sigma_{inelastic} & \approx 60 mb \end{array}$

Physics of the Vacuum

Elastic diffractive: clean environment to study vacuum, and in particular, transition between soft and hard pomeron.

 $\begin{array}{ll} \sigma_{elastic} &\approx 40 mb \\ \sigma_{diffractive} &\approx 10 mb \\ \sigma_{inelastic} &\approx 60 mb \end{array}$

Pragmatic reasons to understand gluon

- If you want to describe gg->X, gg->H
- if you want to describe the underlying event
- content of proton described in terms of parton distribution functions

Experimental Signatures

How to distinguish diffractive events

Detect central system including presence of <u>rapidity gap</u>

All diffractive events will have a large rapidity gap (from the system down to the beam line) due to the colourless exchange

Most pp interactions distribute particles throughout 4π (collimated in jets but also with activity between jets)

R. McNulty, LHCb, WE-Heraeus-Summerschool, Heidelberg, Sept 2-6, 2013

Graphical Representation

Elastic Scattering

Single Diffraction

Double Diffraction

Central Exclusive Production (elastic)

Central Exclusive Production (inelastic)

What's a large gap?

- Khoze, Kraus, Martin, Ryskin, Zapp, "Diffraction and correlations at the LHC: definitions and observables", arXiv:1005.4839v2
- Probability for inclusively produced J/psi to give two muons and nothing else inside LHCb is < 0.000005

Effect of beam pile-up

Detect empty event except for some isolated activity.

 $N_X = \sigma_X L$ with L luminosity (number of protons per unit area)

High luminosity to increase probability for producing rare processes like Higgs (or SUSY)

Increases number of interactions $<\mu>$.

The LHCb experiment

R. McNulty, LHCb, WE-Heraeus-Summerschool, Heidelberg, Sept 2-6, 2013

LHCb: A forward detector

Fully instrumented in region: $2 < \eta < 5$ Some detection: $-3.5 > \eta > -1.5$ Large enough acceptance to look for gaps Can trigger on low transverse momentum objects

The LHCb detector

Fully instrumented within $2 < \eta < 5$ Trigger: $p_{\mu} > 3 \text{ GeV}$, $pt_{\mu} > 0.4 \text{ GeV}$, $m_{\mu\mu} > 2.5 \text{ GeV}$ Low multiplicity required. Restricts to single-interaction collisions

Graphical Representation

Use of backwards tracks

Use of backwards tracks

Calorimeter System in LHCb

Scintillation Pad Detector.

If a charged particle goes through, we get a signal. Rough count of number of charged particles.

Use in trigger to select **low multiplicity** events for CEP. >0,<20 hits

Diffractive Physics with muons

Central Exclusive Production with Dimuon final states

Related phenomena where the colourless object creates a particle

(Note: $J/\psi \rightarrow \mu\mu$ and $\chi_c \rightarrow J/\psi\gamma$)

Requiring dimuons significantly reduces inclusive QCD backgrounds

Motivation

Usually proton collisions produce very many final state particle because the gluon is a coloured object. But if a **colourless** object is exchanged.....

Sensitive to **saturation** effects

'Standard Candle' for other DPE processes, in particular, Higgs.

Motivation

Usually proton collisions produce very many final state particle because the gluon is a coloured object. But if a **colourless** object is exchanged.....

QED process. Can be predicted with high accuracy (<1%) Candidate process for very precise luminosity determination at LHC

Motivation

Usually proton collisions produce very many final state particle because the gluon is a coloured object. But if a **colourless** object is exchanged.....

- No backward tracks (2 gaps that sum to 3.5 units of rapidity)
 Precisely two forward muons
- No photons (for J/psi and diphoton process)
- One photon (for ChiC analysis)
- p_T of dimuon <900 MeV (<100MeV for $p\mu\mu p$).

Effect of rapidity gap requirement on low multiplicity muon triggered events

 I/ψ and ψ '

- Results published in JPG 40 (2013) 045001
- Based on 37pb⁻¹ (Full 2010 dataset)
- No backward tracks
- Precisely two forward muons
- No photons

Non-resonant background very small

Distributions are not background-subtracted. 37pb-1 of data: 1492 J/ ψ and 40 ψ (2s)

Cross-section measurement

Feed-down background

Inelastic background

Characterise p_T spectrum of background using shapes with 3-8 tracks and extrapolate to 2 track case.

Inelastic background

Signal shape

Estimated from Superchic using exp(- b p_T^2) (arXiv: 0909.4748) Take b from HERA. Extrapolate to LHCb energy to get b= 6.1 +/- 0.3 GeV⁻² Crosscheck: Fit to spectrum below with b free gives b = 5.8 +/- 1 GeV⁻²

R. McNulty, LHCb, WE-Heraeus-Summerschool, Heidelberg, Sept 2-6, 2013

LHCb compared to theory & experiment

Results (in pl) are for VM	with two muor	is with 2<η<4.5
----------------	--------------	---------------	-----------------

Predictions	$\sigma_{pp \to J/\psi \ (\to \mu^+ \mu^-)}$	$\sigma_{pp \to \psi(2S)(\to \mu^+ \mu^-)}$
Gonçalves and Machado	275	
STARLIGHT	292	6.1
Motyka and Watt	334	
SUPERCHIC ^a	396	
Schäfer and Szczurek	710	17
LHCb measured value	$307\pm21\pm36$	$7.8\pm1.3\pm1.0$

^a SUPERCHIC simulation does not include a gap survival factor.

All predictions (bar Schaefer&Szcaurek) have similar approach and give similar results and are consistent with our data.

See J. Figiel presentation at this school

R. McNulty, LHCb, WE-Heraeus-Summerschool, Heidelberg, Sept 2-6, 2013

- Martin A D, Nockles C, Ryskin M and Teubner T 2008 Small x gluon from exclusive J/ψ production Phys. Lett. B 662 252 (arXiv:0709.4406)
- [2] Ryskin M G 1993 J/ψ electroproduction in LLA QCD Z. Phys. C 57 89
- [3] Ryskin M G, Roberts R G, Martin A D and Levin E M 1997 Diffractive J/ψ photoproduction as a probe of the gluon density Z. Phys. C 76 231 (arXiv:hep-ph/9511228)

LHCb c/s is HERA c/s + photon spectrum + gap survival factor ($r \sim 0.8$)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y}_{pp \to pVp} = r(y) \left[k_+ \frac{\mathrm{d}n}{\mathrm{d}k_+} \sigma_{\gamma p \to Vp}(W_+) + k_- \frac{\mathrm{d}n}{\mathrm{d}k_-} \sigma_{\gamma p \to Vp}(W_-) \right]_{\mathbf{d}y}$$

$$k_{\pm} \approx (m_V/2) \exp(\pm |y|),$$

LHCb differential data fitted assuming power law dependence $\sigma(W) = aW^{\delta}$

Sensitivity to gluon pdf (arXiv: 1307.7099)

- No backward tracks
- Precisely two forward muons. $m_{\mu\mu}$ >2.5 GeV
- No photons

Fit elastic and inelastic components

Shape for inelastic events

Fit to signal events

Note: this time we have simulation that predicts the shape for the three contributions.

Background shape from data Signal shape from simulation.

Measured cross-section pµµp: 67 +- 19 pb LPAIR (J. Vermaseren) 42 pb

(Note: $\chi_c \rightarrow J/\psi\gamma$) and $J/\psi \rightarrow \mu\mu$

- Expect
 - \Box χ_{c1} suppressed due to Landau-Yang theorem
 - □ χ_{c2} suppressed: can't have a bound state with J=2, J_z=0
 - $\Box \chi_{c0}$ dominant (for small p_T)
 - This is different from inclusive chi production.

R. McNulty, LHCb, WE-Heraeus-Summerschool, Heidelberg, Sept 2-6, 2013

X_c: DiMuon Invariant Mass

About half the background that was observed in the exclusive J/ψ analysis (since no continuum process).

χ_c: <u>DiMuon+Photon Invariant Mass</u>

Inelastic contribution appears to be much larger than for J/ψ . In a first approximation it should be square of bkg in J/ψ process.

Theory v experiment

 $\sigma_{\chi_{c0->\mu+\mu-\gamma}} = 9.3 +/- 2.2 +/- 3.5 +/- 1.8 \text{ pb}$ $\sigma_{\chi_{c1->\mu+\mu-\gamma}} = 16.4 +/- 5.3 +/- 5.8 +/- 3.2 \text{ pb}$ $\sigma_{\chi_{c2->\mu+\mu-\gamma}} = 28.0 +/- 5.4 +/- 9.7 +/- 5.4 \text{ pb}$

LHCb preliminary results with 2010 data

χ ₀ : 9.3 +- 4.5 pb	χ ₁ : 16.4 +- 7.1 pb	χ ₂ : 28.0 +-12.3 pb
SuperChic: 14 pb	10 pb	3 pb

Large contribution due to X_{c0} is confirmed.

 χ_{c2} larger than expected but note that non-elastic background has been assumed same for each resonance. More precise data required.

Future Prospects

Repeat measurement with proton-lead collision data. Photon nearly always comes from the lead nucleus (Z²) (J.Nystrand EPS2013, Stockholm)

LHCb compared to HERA

Factor ~ *100 data now available with 2011+2012 (~3fb⁻¹)

Sensitivity to saturation effects

Sensitivity to saturation effects

Sensitivity to saturation effects

$\chi_{\rm c}$ meson

• To see χ_{c0} , choose more favourable decay:

- \square $\chi_{c0}\text{-}{>}\pi\pi$ or KK ~1% while $\chi_{c2}\text{-}{>}\pi\pi$ or KK ~0.1%
- □ Backgrounds? (Harland-Lang et al. arXiv: 1105.1626)
- LHCb: RICH detectors + real-time analysis

CEP meson-meson production arXiv:1105.1626

- J^{PC} of X(3872) shown by LHCb to be 1++ (arXiv:1302.6269)
- $\chi_{c(1++)}$ has been observed exclusively.
- If X(3872) is a bound cc state, might expect to observe it in central exclusive production – it decays in similar way as ψ(2S) and χ_c

Exotics

- CEP is rich in colour-neutral gluons
- Excellent laboratory to find two predicted QCD objects: odderons and glueballs
- Backgrounds from normal (colourful) QCD heavily suppressed.

Search for odderon

Motyka, DIS 2008.

Glueballs

Meson	LHC ($\sqrt{s} = 5.5 \text{ TeV}$)				ALICE ($\sqrt{s} = 2.76 \text{ TeV}$)	
	$\Gamma_{\gamma\gamma}$ [eV]	Γ_{gg} [MeV]	$\sigma_{\gamma\gamma}~[\mu{ m b}]$	$\sigma_{\mathbb{PP}}$ [mb]	$\sigma_{\gamma\gamma}~[\mu{ m b}]$	$\sigma_{\mathbb{PP}}$ [mb]
$f_0(1500)$	0.77	69.8	1.30	1.07	0.78	0.99
$f_0(1710)$	7.03	70.2	8.60	0.68	4.10	0.64
X(1835)	0.02	70.3	0.02	0.54	0.01	0.50

Machado & daSilva, arXiv: 1111.608

- Glueball candidates may be copiously produced at LHC but obscured by coloured combinatoric background.
- Different sensitivities in pp and pA running.
- In DPE only resonances are produced and decay_mode + spin-parity analysis + bkg estimates may allow their observation.

Summary

- First Observation of CEP at LHC
- First separation of χ_c spin states in CEP
- Good agreement with theory predictions
- Consistency with HERA and CDF results for J/ ψ and QED produced dimuons.
- Excellent testing ground for QCD and behaviour of gluon at low x.
- Potential to discover glueballs, saturation and other exotic phenomena

<u>Data</u>

Zeus collaboration, hep-ex/9704013 Zeus collaboration, hep-ex/0201043 H1 collaboration, hep-ex/0205107 H1 collaboration, arXiv:0510.016 CDF collaboration, arXiv:0902.1271 Zeus collaboration, arXiv:0903.4205 LHCb collaboration, arXiv:1301.7084 H1 collaboration, arXiv:1304.5162

Theory:

Ryskin, Z.Phys. C57 (1993) 89. Ryskin, Roberts, Martin, Levin, hep-ph/9511228 Martin, Nockles, Ryskin, Teubner, hep-ph/0709.4406 Jones, Martin, Ryskin, Teubner, arXiv: 1307.7099 Khoze Martin Ryskin, hep-ph/0201301 Khoze, Martin, Ryskin, Stirling, hep-ph/0410020v2 Motyka, Watt: PRD 78, 014023 (2008) Schaefer, Szczurek: PRD 76, 094014 (2007) Klein, Nystrand, PRL92, 142003 (2004); PRD60 014903 (1999). Goncalves, Machado, PRD77, 014037 (2008), arXiv:1305.4611.

Further references

Odderon:

- Leszek, Motyka, DIS2008
- Bzdak, Motyka, Szymanowski, Cudell, PRD 75, 094023 (2007)
- □ Khoze, Martin, Ryskin, hep-ph/0201301v2
- □ Stein, Schafer, PLB 300 (1993) 400.
- □ Schaefer, Mankiewicz, Nachtman, PLB272 (1991) 419.
- Ewerz, hep-ph/0306137

<u>Chi_c:</u>

- Harland-Lang, Khoze, Ryskin, Stirling, arXiv:0909.4748, arXiv: 1304.4262
- □ Khoze, Martin, Ryskin, Stirling, Eur. Phys. J. C35 (2004) 211.
- Pasechnik, Szczurek, hep-ph/0901.4187v2
- Pasechnik, Szczurek, Teryaev, hep-ph/0909.4498v1

Di photon production

- □ J. Vermaseren, Nucl. Phys. B229 (1983) 347.
- Boonekamp et al., hep-ph/1102.2531v1