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Overview

• Essentials
• QCD and the lattice
• Quark and gluon actions
• The path integral and Monte Carlo

• Spectroscopy on the lattice
• Correlation functions
• Variational method
• Making measurements
• Spin

• Measurements
• Glueballs
• Charmonium
• Light quarks
• Scattering, phase shifts and resonances



A constituent picture of hadrons

• QCD has quarks (in six Wavours) and gluons
• The conVnement conjecture: Velds of the QCD
lagrangian must be combined into colourless
combinations: themesons and baryons

A constituent model

quark model
constituents label

3⊗ 3̄ = 1⊕ 8 meson
3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 baryon
8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10 glueball

3̄⊗ 8⊗ 3 = 1⊕ 8⊕ 8⊕ 8⊕ 10⊕ 10 hybrid
...

...
...

• QCD does not always respect this constituent labelling!
There can be strong mixing.



Lattice Hadron Spectroscopy

• SigniVcant experimental eUort hoping to understand light
hadron and charm spectroscopy
• Are there resonances that don’t Vt in the quark model?
• Are there gluonic excitations in this spectrum?
• What structure does conVnement lead to?
• How do resonances decay?

• To use LQCD to address these questions means:
• identifying continuum properties of states
• computing scattering and resonance widths

• To acheive this we need
• Techniques that give statistical precision
• Spin identiVcation
• Control over extrapolations (mq → 0,V→∞, a→ 0.



Essential properties of QCD

• To discretise theory and write useful lattice representation,
important to do best possible job of respecting symmetries
of theory.

• Symmetries deVne universality classes and ensure
approach to continuum as we (try to) take a→ 0

Symmetries of QCD

• Poincaré invariance (Lorentz and translation invariance)
• Gauge invariance - SU(3) gauge group
• Discrete symmetries: parity, time-reversal, charge
conjugation

• (Near) chiral symmetry (for massless quarks).
• (Near) Wavour symmetry (for mass-degenerate quarks).

• The QCD path integral is written in terms of the two
fundamental Velds, the quarks and the gluons.



Wilson’s big idea...

• Wilson realised that ensuring gauge invariance means the
gluon Velds have to be given special treatment:

Quark fields

on sites

on links

Gauge fields



Lattice gauge invariants



Lattice action - the gluons

• To deVne a path integral, we also need an action
• The simplest gauge invariant function of the gauge link
variables alone is the plaquette (the trace of a
path-ordered product of links around a 1× 1 square).

SG[U] =
β

Nc

∑
x,µ<ν

ReTr
(
1− Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x))

)
This is the Wilson gauge action

• A path integral for the Yang-Mills theory of gluons would
be

ZYM =

∫ ∏
µ,x

DUµ(x)e−SG[U]

• The coupling constant, g appears in β = 2Nc
g2

• No need to Vx gauge; the gauge orbits can be trivially
integrated over and the group manifold is compact.



Lattice action - the gluons

• A Taylor expansion in a shows that

SG[U] =
β

Nc

∑
x,µ<ν

ReTr
(
1− Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x))

)
=

∫
d4x − 1

4
Tr FµνFµν +O(a2)

• All terms proportional to odd powers in the lattice spacing
vanish because the lattice action preserves a discrete
parity symmetry.

• The action is also invariant under a charge-conjugation
symmetry, which takes Uµ(x)→ U∗µ(x).

• We have kept almost all of the symmetries of the
Yang-Mills sector, but broken the SO(4) rotation group
down to the discrete group of rotations of a hypercube.



Lattice actions - the quarks

• Continuum action:

SQ =

∫
d4xψ̄(γµDµ + m)ψ

• When m = 0, the action has an extra, chiral symmetry:

ψ −→ ψ(χ) = eiαγ5ψ, ψ̄ −→ ψ̄(χ) = ψ̄eiαγ5

• Central diUerence:

∂µψ(x) =
1
2a

(ψ(x + µ̂)− ψ(x− µ̂))

• Can be made gauge covariant by including the gauge links:

Dµψ(x) =
1
2a

(Uµ(x)ψ(x + µ̂)− Uµ(x− µ̂)ψ(x− µ̂))

• BUT on closer inspection - more minima to action. With
no gauge Velds and ψ(x) = eikx with
k = {π, 0, 0, 0} or {π, π, 0, 0} or {π, π, π, 0} or . . . .



Lattice doubling

Central difference between

these two points is zero, not large!



Lattice actions - the quarks (3)

• This is the (in)famous doubling problem.

The Nielson-Ninomiya “no-go” theorem

There are no chirally symmetric, local, translationally invariant
doubler-free fermion actions on a regular lattice.

• To put quarks on the lattice, more symmetry must be
broken or else a theory with extra Wavours of quarks must
be simulated.

• A number of solutions are used, each with their
advantages and disadvantages.

• The most commonly used are:
• Wilson fermions
• Kogut-Susskind (staggered) fermions
• Ginsparg-Wilson fermions (overlap, domain wall,
perfect...)

• Twisted mass



QCD on the computer - Monte Carlo integration

• Finite lattice with a 6= 0, number of degrees of freedom is
Vnite.

• The path integral is “ordinary” high-dimensional integral.
Can be estimated stochastically by Monte Carlo.

• Variance reduction is crucial. Can only be done eUectively
if theory simulated in Euclidean space-time metric.

• No useful importance sampling weight for the theory in
Minkowski space.

• Euclidean path-integral:

〈O〉 =
1
Z

∫
DUDψ̄Dψ O[U, ψ̄, ψ] e−S[U,ψ̄,ψ]

• e−S varies enormously; sample only the tiny region of
conVguration space that contributes signiVcantly.



Dynamical quarks in QCD

• Monte Carlo with Nf = 2 degenerate quarks. Quark Velds
obey a grassmann algebra – diXcult to manipulate in the
computer.

• Quark action is bilinear; integrals done analytically:

ZQ[U] =

∫
DψDψ̄ e−

∑
f ψ̄fM[U]ψ = detMNf[U]

• Including the gauge Velds:

Z =

∫
DU ZQ[U]e−SG[U] =

∫
DU detMNf[U]e−SG[U]

• For Nf = 2 detM2 ≥ 0 so can be included in importance
sampling (but expensive).

• Using M† = γ5Mγ5, detM2 is re-written

ZQ[U] =

∫
DφDφ∗e−φ∗[M†M]−1φ



Dynamical quarks in QCD

• Requires applying inverse of M — very large matrix, so
takes a lot of computer time.

• Where most computing power in lattice simulations goes;
computing the eUect of the quark Velds acting on the
gluons in the Monte Carlo updates.

• Alternative: quenched approximation to QCD. Ignore
fermion path integral completely - unphysical
approximation so eUects are hard to quantify.

• Inversion is needed again in the measurement stage too;

〈ψ(x)ψ̄(y)〉 = M−1[U](x, y)



Markov Chain Monte Carlo

• How is the conVguration space sampled?
• All techniques use aMarkov process: stochastic transition
taking current state of the system randomly to a new state,
such that probability of jump is independent of past states/

• Ergodic (positive recurrent, irreducible) Markov chains
have unique stationary distributions; build the Markov
process so it has our importance sampling distribution as
its stationary state.

• If this can be done, then the sequence of conVgurations
generated by the process is our importance sampling
ensemble!

• Almost all algorithms exploit detailed balance to achieve
this.



Variational method in Euclidean QFT
• Ground-state energies found from t→∞ limit of:

Euclidean-time correlation function

C(t) = 〈0| Φ(t) Φ†(0) |0〉
=

∑
k,k′

〈0| Φ|k〉〈k|e−Ĥt|k′〉〈k′|Φ† |0〉

=
∑
k

|〈0| Φ|k〉|2 e−Ekt

• So limt→∞ C(t) = Ze−E0t

• Variational idea: Vnd operator Φ to maximise C(t)/C(t0)
from sum of basis operators Φ =

∑
a vaφa

[C. Michael and I. Teasdale. NPB215 (1983) 433]
[M. Lüscher and U. WolU. NPB339 (1990) 222]



Excitations

Variational method

If we can measure Cab(t) = 〈0|φa(t)φ
†
b(0)|0〉 for all a, b and

solve generalised eigenvalue problem:

C(t) v = λC(t0) v

then
lim

t−t0→∞
λk = e−Ekt

For this to be practical, we need:
• a ‘good’ basis set that resembles the states of interest
• all elements of this correlation matrix measured

[see Blossier et.al. JHEP 0904 (2009) 094]



Fermions in the path integral

• In path integral, fermions are represented using
Grassmann algebra.∫

dη = 0,
∫

dη η = 1, η2 = 0

• Higher dimensions - anticommutation rule:

ηiηj = −ηjηi

• Expensive to manipulate directly by computer . . .



Fermions in the path integral

• In QCD the action is (usually) bilinear.
• Consider computing a correlation function for the
ρ-meson in 2-Wavour QCD:

Cρ(t1, t0) =

∫
DUDψ̄Dψ ψ̄uγiψd(t1) ψ̄dγiψu(t0) e−SG[U]+ψ̄fMf[U]ψf∫

DUDψ̄Dψ e−SG[U]+ψ̄fMf[U]ψf

• Integrate the grassmann Velds analytically, giving:

Cρ(t1, t0) =

∫
DU Tr γiM−1d (t1, t0)γiM−1u (t0, t1) detM2[U] e−SG[U]∫

DU detM2[U] e−SG[U]

• Fermions in lagrangian→ fermion determinant
• Fermions in measurement→ propagators



Fermions in the path integral

• With more insertions, need Wick’s theorem
• Example — four Veld insertions:

〈ψiψ̄jψkψ̄l〉

• and the pairwise contraction can be done in two ways:

ψiψ̄jψkψ̄l and ψiψ̄jψkψ̄l

• ...giving the propagator combination

M−1ij M
−1
kl −M−1jk M

−1
il

• the minus-sign comes from the anti-commutation needed
in the second term.

• More Velds means more combinations
• This is important in (eg.) isoscalar meson spectroscopy.



A tale of two symmetries

• Continuum: states classiVed by JP irreducible
representations of O(3).

O(3) Oh

• Lattice regulator breaks O(3)→ Oh

• Lattice: states classiVed by RP “quantum letter” labelling
irrep of Oh



Irreps of Oh

• O has 5 conjugacy classes (so Oh has 10)
• Number of conjugacy classes = number of irreps
• Schur: 24 = 12 + 12 + 22 + 32 + 32

• These irreps are labelled A1,A2, E, T1, T2

E 8C3 6C2 6C4 3C2

A1 1 1 1 1 1
A2 1 1 -1 -1 1
E 2 -1 0 0 2
T1 3 0 -1 1 -1
T2 3 0 1 -1 -1



Spin on the lattice

• Oh has 10 irreps: {Ag,u
1 ,Ag,u

2 , Eg,u, Tg,u1 , Tg,u2 , },
where {g, u} label even/odd parity.

• Link to continuum: subduce representations of O(3) into
Oh

A1 A2 E T1 T2
J = 0 1
J = 1 1
J = 2 1 1
J = 3 1 1 1
J = 4 1 1 1 1
...

...
...

...
...

...

• Enough to search for degeneracy patterns in the spectrum?

4 ≡ 0⊕ 1⊕ 2



Operator basis — derivative construction

• A closer link to the continuum is needed
• Start with continuum operators, built from n derivatives:

Φ = ψ̄ Γ (Di1Di2Di3 . . .Din)ψ

• Construct irreps of SO(3), then subduce these
representations to Oh

• Now replace the derivatives with lattice Vnite diUerences:

Djψ(x)→ 1
a

(
Uj(x)ψ(x + ̂)− U†j (x− ̂)ψ(x− ̂)

)



Example: JPC = 2++ meson creation operator

• Need more information to discriminate spins. Consider
continuum operator that creates a 2++ meson:

Φij = ψ̄
(
γiDj + γjDi −

2
3
δijγ · D

)
ψ

• Lattice: Substitute gauge-covariant lattice Vnite-diUerence
Dlatt for D

• A reducible representation:

ΦT2 = {Φ12,Φ23,Φ31}

ΦE =

{
1√
2

(Φ11 − Φ22),
1√
6

(Φ11 + Φ22 − 2Φ33)

}
• Look for signature of continuum symmetry:

〈0|Φ(T2)|2++(T2)〉 = 〈0|Φ(E)|2++(E)〉



Glueballs



Creation operators: glueballs

• To measure the correlation functions, we need to measure
appropriate creation operators on our ensemble.

• The operators should be functions of the Velds on a
time-slice and transform irreducibly according to an irrep
of Oh (as well as isospin, charge conjugation etc.)

• First example: the glueball. An appropriate operator would
be a gauge invariant function of the gluons alone: a closed
loop trace.

• Link smearing greatly improved ground-state overlap.
• Apply smoothing Vlters to the links to extract just slowly
varying modes that then have better overlap with the
lowest states.



Creation operators: glueballs

• What do operators that transform irreducibly under Oh

look like?
Φ1 Φ2 Φ3

• Can make three operators by taking linear combinations of
these loops.

• They form two irreducible representations (Ag
1 and Eg).

ΦAg
1

= Φ1 + Φ2 + Φ3

Φ
(1)
Eg = Φ1 − Φ2

Φ
(2)
Eg = 1√

3
(Φ1 + Φ2 − 2Φ3)



Creation operators: glueballs

• After running simulations at more than one lattice spacing,
a continuum extrapolation (a→ 0) can be attempted.

• The expansion of the action can suggest the appropriate
choice of extrapolating function.
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Charmonium and D/Ds



Dispersion relations - ηc and D mesons

• Action parameters for charm quark tuned to ensure
dispersion relation for ηc is relativistic

• Using these tuned parameters, D meson also has
relativistic dispersion relation
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Fits to λk(t)

• Variational basis, so can access excited states
• Fit λk(t) to one or two exponentials
• Second exponential to stabilise some Vts - value not used
• Plots show λk(t)× eEk(t−t0)
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• Data from T−−1 channel (J = 1, 3, 4, . . . )



Subduction of derivative-based operators

• T−−1 variational basis
• 26 operators, up to DiDjDk

• Correlation matrix at t/at = 5,
normalised:

Qij =
Cij√
CiiCjj

• Reasonable spin separation
seen

0.2 0.4 0.6 0.8 1.0



Spin identiVcation

• Using Z = 〈0|Φ|k〉, helps to identify continuum spins
• For high spins, can look for agreement between irreps
• Data below for T−−1 irrep, colour-coding is Spin 1, Spin 3
and Spin 4.

0.53726H4L0.53726H4L0.53726H4L0.53726H4L0.53726H4L0.53726H4L0.53726H4L0.53726H4L0.667H3L 0.646H1L0.646H1L0.646H1L0.646H1L0.646H1L0.646H1L0.646H1L0.646H1L0.667H3L 0.6713H5L0.6713H5L0.6713H5L0.6713H5L0.6713H5L0.6713H5L0.6713H5L0.6713H5L0.667H3L 0.676H1L0.676H1L0.676H1L0.676H1L0.676H1L0.676H1L0.676H1L0.676H1L0.667H3L 0.727H5L0.727H5L0.727H5L0.727H5L0.727H5L0.727H5L0.727H5L0.727H5L0.667H3L 0.753H2L0.753H2L0.753H2L0.753H2L0.753H2L0.753H2L0.753H2L0.753H2L0.667H3L 0.759H7L0.759H7L0.759H7L0.759H7L0.759H7L0.759H7L0.759H7L0.759H7L0.667H3L 0.767H3L0.767H3L0.767H3L0.767H3L0.767H3L0.767H3L0.767H3L0.767H3L0.667H3L 0.776H3L0.776H3L0.776H3L0.776H3L0.776H3L0.776H3L0.776H3L0.776H3L0.667H3L

• Can help identify glue-rich states, using operators with
[Di,Dj]



. . . the rest of the spin-4 state

• All polarisations of the spin-4 state are seen
• Spin labelling: Spin 2, Spin 3 and Spin 4.

0.763H6L0.763H6L0.763H6L0.667H3L
0.6770H6L0.6770H6L0.6770H6L0.667H3L 0.774H2L0.774H2L0.774H2L0.667H3L 0.6765H7L0.6765H7L0.6765H7L0.6765H7L0.667H3L 0.759H4L0.759H4L0.759H4L0.759H4L0.667H3L 0.771H4L0.771H4L0.771H4L0.771H4L0.667H3L 0.6768H7L0.6768H7L0.6768H7L0.6768H7L0.6768H7L0.6768H7L0.6768H7L0.667H3L 0.6772H5L0.6772H5L0.6772H5L0.6772H5L0.6772H5L0.6772H5L0.6772H5L0.667H3L 0.762H3L0.762H3L0.762H3L0.762H3L0.762H3L0.762H3L0.762H3L0.667H3L 0.769H3L0.769H3L0.769H3L0.769H3L0.769H3L0.769H3L0.769H3L0.667H3L 0.777H2L0.777H2L0.777H2L0.777H2L0.777H2L0.777H2L0.777H2L0.667H3L

A−−1 A−−2 E−− T−−2



Identifying spin - operator overlaps

• Example — 3−− continuum
• Look for remnant of
continuum symmetry:

〈0|Φ[J=3]
A−−2
|k〉=〈0|Φ[J=3]

T−−1
|k〉=〈0|Φ[J=3]

T−−2
|k〉

• Can identify two spin-3 states.
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Excitation spectrum of charmonium
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• Quark model: 1S, 1P, 2S, 1D, 2P, 1F, 2D, . . . all seen.
• Not all Vt quark model: spin-exotic (and non-exotic)
hybrids seen

[Liu et.al. arXiv:1204.5425]



Gluonic excitations in charmonium?
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• See states created by operators that excite intrinsic gluons
• two- and three-derivatives create states in the open-charm
region.

[Liu et.al. arXiv:1204.5425]



Lattice artefacts in charmonium
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• HyperVne structure sensitive to lattice artefacts. Boost
co-eXcient of action term to suppress these.

• green→ light blue. Shifts are ≈ 40 MeV.

[Liu et.al. arXiv:1204.5425]



Excitation spectrum of D
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• Subtract 1
2Mηc to reduce systematic error

• Thresholds for both physical Mπ and Mπ ≈ 400 MeV

[Moir et.al. JHEP 1305 (2013) 021]



Excitation spectrum of Ds
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• Subtract 1
2Mηc to reduce systematic error

• Thresholds for both physical Mπ and Mπ ≈ 400 MeV

[Moir et.al. JHEP 1305 (2013) 021]



Light quark hadrons



Isovector meson spectroscopy
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• mπ = 400 MeV
• No 2-meson operators

• Spin-exotic states seen
• Non-exotic hybrids too?

[Dudek et.al. Phys.Rev.D82:034508,2010]



Isoscalar mesons
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• mπ = 400 MeV, Vnite a
• No 0++ data presented
• No glueball or two-meson
operators

Statistical precision:
η 0.5 %
η′ 1.9 %

[Dudek et.al. Phys.Rev.D83:111502,2011]



Hybrid excitations?
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• mπ = 700 MeV • Complete hybrid supermultiplet seen

[J.Dudek, Phys.Rev.D84 (2011) 074023]



Light Baryon Spectra

• Baryon spectra using
operators with SU(3)F

• mπ ≈ 400 MeV
• Blue - Wavour octet
• Yellow - Wavour decuplet
• White - Wavour singlet
• Thick boxes - hybrid
content
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Scattering



Scattering

Scattering matrix elements not directly accessible from Eu-
clidean QFT [Maiani-Testa theorem]

• Scattering matrix elements:
asymptotic |in〉, |out〉 states.
〈out |eiĤt| in〉 → 〈out |e−Ĥt| in〉

• Euclidean metric: project onto
ground-state

In

States

Out

States

• Lüscher’s formalism: information on elastic scattering
inferred from volume dependence of spectrum

• Requires precise data, resolution of two-hadron and
excited states.



Hadrons in a Vnite box: scattering
• On a Vnite lattice with periodic b.c., hadrons have quantised
momenta; p = 2π

L

{
nx, ny, nz

}
• Two hadrons with total P = 0 have a discrete spectrum
• These states can have same quantum numbers as those created by
q̄Γq operators and QCD can mix these

• This leads to shifts in the
spectrum in Vnite volume

• This is the same physics that
makes resonances in an
experiment

• Lüscher’s method - relate
elastic scattering to energy
shifts

Toy model

H =

(
m g
g 4π

L

)
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I = 2 π − π phase shift
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• Lüscher’s method: Vrst
determine energy shifts
as volume changes

• Data for
L = 16as, 20as, 24as

• Small energy shifts are
resolved

• Measured δ0 and δ2 (δ4 is very small)
• I = 2 a useful Vrst test - simplest Wick contractions

Dudek et.al. [Phys.Rev.D83:071504,2011, arXiv:1203.6041]



I = 2 π − π phase shift
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Dudek et.al. [Phys.Rev.D83:071504,2011, arXiv:1203.6041]



I = 1 π − π phase shift (near the ρ)
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Dudek et.al. [arXiv:1212.0830]



Summary

• The lattice provides a non-perturbative regularisation of
the QCD path integral.

• Modern simulations include light quark dynamics close to
the physical up and down mass.

• Excitation spectra can be computed using variational
methods

• Scattering can not be directly computed - but can be
inferred (below inelastic thresholds) using Lüscher’s
method.

• Inelastic scattering is a new Veld...
• Also: Matrix elements, distribution functions, production
rates, ...


