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Overview

e Essentials

e QCD and the lattice

e Quark and gluon actions

e The path integral and Monte Carlo
e Spectroscopy on the lattice

e Correlation functions

e Variational method

e Making measurements

e Spin
e Measurements

e Glueballs

e Charmonium

e Light quarks

e Scattering, phase shifts and resonances



A constituent picture of hadrons

e QCD has quarks (in six flavours) and gluons

e The confinement conjecture: fields of the QCD
lagrangian must be combined into colourless
combinations: the mesons and baryons

A constituent model

quark model

constituents label
303 = 198 meson

30303 = 108d8D 10 baryon
8® 8 = 10808D 10D 10 glueball

38R®3 108P8DE8D 10D 10 hybrid

e QCD does not always respect this constituent labelling!
There can be strong mixing.



Lattice Hadron Spectroscopy

e Significant experimental effort hoping to understand light
hadron and charm spectroscopy
o Are there resonances that don’t fit in the quark model?
Are there gluonic excitations in this spectrum?
What structure does confinement lead to?
e How do resonances decay?

e To use LQCD to address these questions means:
e identifying continuum properties of states
e computing scattering and resonance widths

e To acheive this we need

e Techniques that give statistical precision
e Spin identification
e Control over extrapolations (mq — 0,V — 00,a — 0.



Essential properties of QCD

e To discretise theory and write useful lattice representation,
important to do best possible job of respecting symmetries
of theory.

e Symmetries define universality classes and ensure
approach to continuum as we (try to) take a — 0

e Poincaré invariance (Lorentz and translation invariance)

e Gauge invariance - SU(3) gauge group

e Discrete symmetries: parity, time-reversal, charge
conjugation

e (Near) chiral symmetry (for massless quarks).

e (Near) flavour symmetry (for mass-degenerate quarks).

e The QCD path integral is written in terms of the two
fundamental fields, the quarks and the gluons.



Wilson’s big idea...

e Wilson realised that ensuring gauge invariance means the
gluon fields have to be given special treatment:
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Lattice gauge invariants
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Lattice action - the gluons

To define a path integral, we also need an action

The simplest gauge invariant function of the gauge link
variables alone is the plaquette (the trace of a
path-ordered product of links around a 1 x 1 square).

B " .
Sc[U] = N Z ReTr (1— U,(x)U,(x + ,u)UL(x + D)Ul(x)))
¢ X, <V
This is the Wilson gauge action
A path integral for the Yang-Mills theory of gluons would

be
Zym = / [[Pu.(x)e>
X

The coupling constant, g appears in § = 2gr\ic

No need to fix gauge; the gauge orbits can be trivially
integrated over and the group manifold is compact.




Lattice action - the gluons

e A Taylor expansion in a shows that

Sc[u] = 5 Z ReTr (1 — U, (x)U,(x + AUl (x + 2)U}(x)))

X, U<V

1
_ / d*x — ZTr FuFuw + O(%)

e All terms proportional to odd powers in the lattice spacing
vanish because the lattice action preserves a discrete
parity symmetry.

e The action is also invariant under a charge-conjugation
symmetry, which takes U,(x) — Uy ().

e We have kept almost all of the symmetries of the
Yang-Mills sector, but broken the SO(4) rotation group
down to the discrete group of rotations of a hypercube.



Lattice actions - the quarks

Continuum action:

Sa.= [dxi(0, +m)y
When m = 0, the action has an extra, chiral symmetry:
p— w(x) = e/, 1; N z/‘,(x) — @eia%

Central difference:

1 N =
0u(x) = o ((x + 1) — dlx = f1))
Can be made gauge covariant by including the gauge links:
1 n n A

D, (x) = o~ (Uu ()t (x + 1) = Up(x = A3 (x — 7))
BUT on closer inspection - more minima to action. With
no gauge fields and 1)(x) = e** with
k= {r,0,0,0} or {m, 7,0,0} or {mr, 7, m,0}or ....



Lattice doubling

Central difference between
these two points is zero, not large!

e T~
@ /‘\ o=




Lattice actions - the quarks (3)

e This is the (in)famous doubling problem.

The Nielson-Ninomiya “no-go” theorem

There are no chirally symmetric, local, translationally invariant
doubler-free fermion actions on a regular lattice.

e To put quarks on the lattice, more symmetry must be
broken or else a theory with extra flavours of quarks must
be simulated.

e A number of solutions are used, each with their
advantages and disadvantages.

e The most commonly used are:

e Wilson fermions

Kogut-Susskind (staggered) fermions

Ginsparg-Wilson fermions (overlap, domain wall,

perfect...)

Twisted mass



QCD on the computer - Monte Carlo integration

e Finite lattice with a # 0, number of degrees of freedom is
finite.

e The path integral is “ordinary” high-dimensional integral.
Can be estimated stochastically by Monte Carlo.

e Variance reduction is crucial. Can only be done effectively
if theory simulated in Euclidean space-time metric.

e No useful importance sampling weight for the theory in
Minkowski space.

e Euclidean path-integral:

(0) = ; / DUDYDY O[U, §, ] e SV

e e > varies enormously; sample only the tiny region of
configuration space that contributes significantly.



Dynamical quarks in QCD

Monte Carlo with N¢ = 2 degenerate quarks. Quark fields
obey a grassmann algebra — difficult to manipulate in the
computer.

Quark action is bilinear; integrals done analytically:

Zo[U] = /Dm)z/? e MUY — det MNU]
Including the gauge fields:
Z= /DU Zo[UJe %) = /pu det MY¥[UJeS<lY

For Ny = 2 det M? > 0 so can be included in importance
sampling (but expensive).
Using MT = ~vsMys, det M? is re-written

Zo[U] = /D¢D¢*e¢*[WMl“¢



Dynamical quarks in QCD

Requires applying inverse of M — very large matrix, so
takes a lot of computer time.

Where most computing power in lattice simulations goes;
computing the effect of the quark fields acting on the
gluons in the Monte Carlo updates.

Alternative: quenched approximation to QCD. Ignore
fermion path integral completely - unphysical
approximation so effects are hard to quantify.

Inversion is needed again in the measurement stage too;

()i (y)) = M7 [U](x,y)



Markov Chain Monte Carlo

How is the configuration space sampled?

All techniques use a Markov process: stochastic transition
taking current state of the system randomly to a new state,
such that probability of jump is independent of past states/

Ergodic (positive recurrent, irreducible) Markov chains
have unique stationary distributions; build the Markov
process so it has our importance sampling distribution as
its stationary state.

If this can be done, then the sequence of configurations
generated by the process is our importance sampling
ensemble!

Almost all algorithms exploit detailed balance to achieve
this.



Variational method in Euclidean QFT

e Ground-state energies found from t — oo limit of:
Euclidean-time correlation function
C(t) = (o] @(t) @'(0) Jo)
= > (ol @fk){kle ™ |K') (K| ®T [o)

k,k/

= D o] ol e
k

e So limy_ o C(t) = Ze ™!

e Variational idea: find operator ® to maximise C(t)/C(t,)
from sum of basis operators ® = >~ v,¢,

[C. Michael and I. Teasdale. NPB215 (1983) 433]
[M. Lischer and U. Wolff. NPB339 (1990) 222]



Excitations

Variational method

If we can measure C,p(t) = (0]¢,(t)¢f(0)[0) for all a,b and
solve generalised eigenvalue problem:

C(t) v=\C(t,) v

then
lim )\ =e &
t—ty—o0

For this to be practical, we need:
e a ‘good’ basis set that resembles the states of interest
e all elements of this correlation matrix measured

[see Blossier et.al. JHEP 0904 (2009) 094]



Fermions in the path integral

e In path integral, fermions are represented using
Grassmann algebra.

/dn—07 /dnn—h =0
e Higher dimensions - anticommutation rule:
iy = =17

e Expensive to manipulate directly by computer ...



Fermions in the path integral

e In QCD the action is (usually) bilinear.

e Consider computing a correlation function for the
p-meson in 2-flavour QCD:

JDUDYDY Puyinha(t) hayitbu(ty) e Sclll+ondlllve

Cp(thto) = f’DUDiZDw e—Sc[Ul+PM[U] v

e Integrate the grassmann fields analytically, giving:
/DU Tr M7 (4, to)viM;  (to, &) det M?[U] eSalV]
/DU det M[U] e~SclU]

Cp(t17t0) -

e Fermions in lagrangian — fermion determinant

e Fermions in measurement — propagators



Fermions in the path integral

With more insertions, need Wick’s theorem
Example — four field insertions:

(i)
and the pairwise contraction can be done in two ways:
wiz/;jz,'kﬁl and 1/)iljj’l~'|<7/;|
...giving the propagator combination
M; "M =M M

the minus-sign comes from the anti-commutation needed
in the second term.

More fields means more combinations

This is important in (eg.) isoscalar meson spectroscopy.



A tale of two symmetries

e Continuum: states classified by )" irreducible
representations of O(3).

0(3) On

e Lattice regulator breaks O(3) — Oy,
e Lattice: states classified by R” “quantum letter” labelling
irrep of Oy,



[rreps of Oy,

O has 5 conjugacy classes (so Oy, has 10)
Number of conjugacy classes = number of irreps
Schur: 24 = 1% + 1% + 2> 4 3? 4 3?

These irreps are labelled A;, A,, E, T;, T,

8C; 6C, 6C, 3C,
1 1 1 1

E
1
1
E |2 -1 0 0 2
3
3




Spin on the lattice

e Oy, has 10 irreps: {AP" A" E&M TP T3 1,
where {g, u} label even/odd parity.
e Link to continuum: subduce representations of O(3) into

Oy
AL A, E T, T,
J=0] 1
J=1 1
J=2 1 1
J=3 1 11
J=4] 1 1 1 1

e Enough to search for degeneracy patterns in the spectrum?

450691@2J




Operator basis — derivative construction

A closer link to the continuum is needed

Start with continuum operators, built from n derivatives:

q) = /(Z r (DiIDizDig v Din)'(/}

Construct irreps of SO(3), then subduce these
representations to Oy

Now replace the derivatives with lattice finite differences:

DY(x) = = (U0 +1) = Ulx = (x— 1)



Example: J°© = 27" meson creation operator

e Need more information to discriminate spins. Consider
continuum operator that creates a 27" meson:

by = 1; (%Dj + vDi — iéiﬂ : D) (0

e Lattice: Substitute gauge-covariant lattice finite-difference
Dlatt for D
¢ A reducible representation:

¢T2 - {¢127 q3237 ¢31}

1 1
oF = {E(Cbn —®y), %(‘Dn + Dy — 2¢33)}

e Look for signature of continuum symmetry:

(OI6™|2+H™) — (o]0 2++®)



Glueballs




Creation operators: glueballs

To measure the correlation functions, we need to measure
appropriate creation operators on our ensemble.

The operators should be functions of the fields on a
time-slice and transform irreducibly according to an irrep
of Oy, (as well as isospin, charge conjugation etc.)

First example: the glueball. An appropriate operator would
be a gauge invariant function of the gluons alone: a closed
loop trace.

Link smearing greatly improved ground-state overlap.

Apply smoothing filters to the links to extract just slowly
varying modes that then have better overlap with the
lowest states.



Creation operators: glueballs

e What do operators that transform irreducibly under Oy,
look like?

P, ®, ®;

e

e Can make three operators by taking linear combinations of

these loops.

e They form two irreducible representations (A} and E,).
(DA% = o, + &, 4+ O
¢§g) - ¢1 - cDz
o) = (&, + &, — 20,



foMg

10

Creation operators: glueballs

After running simulations at more than one lattice spacing,
a continuum extrapolation (a — 0) can be attempted.
The expansion of the action can suggest the appropriate
choice of extrapolating function.
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Charmonium and D/D;



Dispersion relations - 7. and D mesons

e Action parameters for charm quark tuned to ensure
dispersion relation for 7. is relativistic

e Using these tuned parameters, D meson also has
relativistic dispersion relation
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110
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Fits to Ay (t)

[
3

e Variational basis, so can access excited states
e Fit \(t) to one or two exponentials
e Second exponential to stabilise some fits - value not used
o Plots show \(t) x ef(t—t)
13 115 ? 14r -
13 E
12 110 E
12 3
11 1.05 11 i
10 1.00 1.0
ji0.9

T

:

0.9 0.95
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t/a t/a t/a

e Data from T; ™ channel () =1,3,4,...)

t/a



Subduction of derivative-based operators

T, ~ variational basis
26 operators, up to D;D;Dy

Correlation matrix at t/a, = 5, o}/="
normalised:

o=’

Reasonable spin separation ol=4



Spin identification

e Using Z = (0|®|k), helps to identify continuum spins
e For high spins, can look for agreement between irreps

e Data below for T, ™ irrep, colour-coding is Spin 1, Spin 3

and
0.53726(4) [oX 645(1) 0.6713(5) 0.676(1) 0.727(5) 0. 753(2 0. 759(7) 0.767(3)

e Can help identify glue-rich states, using operators with
[Di’ Dj]



.the rest of the spin-4 state

e All polarisations of the spin-4 state are seen

e Spin labelling: Spin 2, Spin 3 and

0.6770(6)  0.774(2) 0.6765(7) 0. 759(4) 0. 77].( 0.6768(7) 0.6772(5) 0.762(3) 0.769(3) 0.777(2

0.763(6)

AT A~ 15



Identifying spin - operator overlaps

| | | @ ama,= 0.6770(7)
© amr,= 0.676(1)
@ amy,= 0.6768(7)
# ama,=0.774(2)
& amy,=0.767(3)
& amp,= 0.769(3)

e Example — 37~ continuum 4t

e Look for remnant of

continuum symmetry: 3t ‘ ‘ @20 !

(0]9) k) = (0] &Y= [kc) = (o] &V~ k)

N
-
X
5"
-

e Can identify two spin-3 states. Lo H}
S |
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Excitation spectrum of charmonium
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Quark model: 1S, 1P, 2S, 1D, 2P, 1F, 2D, . .. all seen.
Not all fit quark model: spin-exotic (and non-exotic)
hybrids seen

[Liu et.al. arXiv:1204.5425]



Gluonic excitations in charmonium?

1500 - . (| |:E] py = El i
L == P 4
B = O =
[ — |
| = == —
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=3 I — ]
Eé = DD
[ r . — -
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0

j O*f 1 2% 1~F 0O 1+ 1** 2*F 3 0o+ 2+—t
e See states created by operators that excite intrinsic gluons

e two- and three-derivatives create states in the open-charm
region.

[Liu et.al. arXiv:1204.5425]



Lattice artefacts in charmonium
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e Hyperfine structure sensitive to lattice artefacts. Boost
co-efficient of action term to suppress these.

e green — . Shifts are ~ 40 MeV.

[Liu et.al. arXiv:1204.5425]
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e Subtract M, to reduce systematic error
e Thresholds for both physical M and M. =~ 400 MeV

[Moir et.al. JHEP 1305 (2013) 021]



Excitation spectrum of D
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e Subtract M, to reduce systematic error
e Thresholds for both physical M, and M, ~ 400 MeV

[Moir et.al. JHEP 1305 (2013) 021]



Light quark hadrons



Isovector meson spectroscopy

16 . 16 160 .
(| i . Lt
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e m, = 400 MeV e Spin-exotic states seen
e No 2-meson operators ¢ Non-exotic hybrids too?

[Dudek et.al. Phys.Rev.D82:034508,2010]



Isoscalar mesons

negative parity positive parity exotics
i B e
oy o S 4 . 4T s B -
= LB e .,
E; t‘j_z 3tt gt 3”“ o= ::
=2 ; - -
=t =
3 =
2 2t .
1+
—3% i
o - . w__ S my = 396 MeV
% 1= isoscalar T -
" isovector
ot YM glueball
e m, = 400 MeV, finite a o o
. Statistical precision:
e No 07" data presented
n 05%
¢ No glueball or two-meson 0 19%

operators
[Dudek et.al. Phys.Rev.D83:111502,2011]



Hybrid excitations?
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Light Baryon Spectra
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Scattering




Scattering

Scattering matrix elements not directly accessible from Eu-
clidean QFT [Maiani-Testa theorem]

e Scattering matrix elements:
asymptotic |in), |out) states.

(out [ in) — (out |e~"| in) In out
States States

e Euclidean metric: project onto
ground-state

e Liischer’s formalism: information on elastic scattering
inferred from volume dependence of spectrum

e Requires precise data, resolution of two-hadron and
excited states.



Hadrons in a finite box: scattering

On a finite lattice with periodic b.c., hadrons have quantised
momenta; p = {n,ny,n,}
Two hadrons with total P = 0 have a discrete spectrum

These states can have same quantum numbers as those created by
qlq operators and QCD can mix these

Toy model

This leads to shifts in the 0
spectrum in finite volume H= ( :

|5 oa
N—

This is the same physics that
makes resonances in an
experiment

Liuscher’s method - relate

elastic scattering to energy x

shifts




| =2 7 — 7 phase shift

— N e Lischer’s method: first
- determine energy shifts
- as volume changes
T e Data for
L = 16a,, 20a, 24a,
e Small energy shifts are
e e resolved

e Measured 9, and 6, (&, is very small)

e | = 2 a useful first test - simplest Wick contractions

Dudek et.al. [Phys.Rev.D83:071504,2011, arXiv:1203.6041]
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Summary

The lattice provides a non-perturbative regularisation of
the QCD path integral.

Modern simulations include light quark dynamics close to
the physical up and down mass.

Excitation spectra can be computed using variational
methods

Scattering can not be directly computed - but can be
inferred (below inelastic thresholds) using Luscher’s
method.

Inelastic scattering is a new field...

Also: Matrix elements, distribution functions, production
rates, ...



