

### WE-Heraeus-Summerschool

Diffractive and electromagnetic processes at high energies

Heidelberg, September 2 - 6, 2013





### **Contents:**

Introduction
Detectors
Total and Elastic Scattering
Single Diffraction Processes
Double Diffraction Processes
Double Pomeron Exchange Processes

## What Happens when hadrons collide?

September 2-6, 2013

Elastic Scattering



































September 2-6, 2013



## Soft Processes

#### It's complicated:

•data often ahead of phenomenology

non-perturbative contributions important even for hard-scattering studies

> visualization of "minimum bias" event in pp  $\sqrt{s}=7$  TeV collisions in PYTHIA8 with MCViz





slide from talk by Peter Scands at "MB & UE Workshop" at CERN, March 2010

# **Definitions: Diffraction**



 Diffractive reactions at hadron colliders are defined as reactions in which no quantum numbers are exchanged between colliding particles
 Identified by presence of:

intact leading particle or large rapidity gap



## **Diffractive Processes**

Hadronic processes can be characterized by an energy scale:

**soft processes** - energy scale of the order of the hadron size (~ 1 fm) pQCD is inadequate to describe these processes

hard processes - "hard" energy scale ( > 1 GeV<sup>2</sup> )
can use pQCD,
"factorization theorems" - can separate perturbative part
from non-perturbative

Diffractive processes mostly belong to "soft processes", however discovery of *hard diffraction* - jet production in ppbar collisions with a leading proton in the final state (1988 UA8)

Hard diffractive processes allow to study diffraction in the pQCD framework.

At the Tevatron we study both soft and hard diffractive processes.

# **Diffraction: definitions**

- y rapidity
- $\eta$  pseudorapidity y=1/2 ln ((E+p<sub>z</sub>)/E-p<sub>z</sub>))  $\eta \equiv y \mid_{m=0}$ = -ln tan(θ/2)
- t four-momentum transfer squared
- $\xi$  fractional momentum loss of pbar
- **M<sub>x</sub>** mass of diffractive system X

 $\xi = M_{\chi}^2/s$  $\Delta \eta \approx \ln(s/M_{\chi}^{2})$ 





September 2-6, 2013

Christina Mesropian

## Tevatron pp Collider at FNAL



## Tevatron pp Collider at FNAL

• Superconducting storage ring 1 km radius, 1 beam-pipe **Collisions 1985-2011** Runs 0 and 1 - Vs=546, 630 GeV, 1800 GeV Run II: Mar 2001-Sept 2011 Produced ppbar collisions at 1.96 TeV 36x36 bunches ~E10-E11 particles per bunch

## Tevatron energy scan

#### Study s-dependence of high cross-sections physics ...mostly non-pQCD

**1.Study of MinBias events**:

**2.Study of Underlying Events** 

3.Gap-X Gap events



## Tevatron energy scan - data

#### September 8 – 16, 2011

- •3x3 bunches
- •Special trigger
- •1 interaction per crossing (no pile-up)

#### Total data taking time :

#### 10 h at 300 GeV and 39 h at 900 GeV

| √s  | 0-bias | Minbias | Gap-X-Gap | Jets  | e,μ,ν | Total #<br>events |
|-----|--------|---------|-----------|-------|-------|-------------------|
| 300 | 1.89 M | 12.1 M  | 9.2 M     | 8.3 K | 352   | 23.2 M            |
| 900 | 8.0 M  | 54.3 M  | 21.8 M    | 550 K | 16 K  | 84.7 M            |

# CDF and DØ Detectors







Top performance (>85% data taking efficiency)
 ~10 fb<sup>-1</sup> per experiment



# **CDF II Detectors**



September 2-6, 2013

Christina Mesropian

### **Forward Detectors**



#### **Forward Detectors are crucial for diffractive studies**

### **Forward Detectors**



#### Forward Detectors are crucial for diffractive studies use Roman Pots for antiproton tagging

### **Forward Detectors**



#### **Forward Detectors are crucial for diffractive studies**

#### use Miniplugs and BSCs for rapidity gaps

September 2-6, 2013

Christina Mesropian

### Forward Detectors at CDFII: Roman Pot Spectrometers (RPS)





### Forward Detectors at CDFII: Beam Shower Counters (BSCs)





September 2-6, 2013

Christina Mesropian

# Forward Detectors at CDFII: MiniPlug Calorimeters (MPs)



Nucl. Instrum. Meth. **A**518 (2004) 42 Nucl. Instrum. Meth. **A**496 (2003) 333





designed to **measure the energy and lateral position** of both electromagnetic and hadronic showers "towerless" geometry – no dead regions

September 2-6, 2013

## MiniPlug Calorimeters: Assembly





#### Still can design and build important detectors by rather small group!

September 2-6, 2013

Christina Mesropian

# Methods



#### **Results are mostly MC free**

#### $\boldsymbol{\xi}$ variable can be determined two ways

- Determine  $\xi$  using Roman Pots tracking
- Also can determine  $\xi$  from  $E_T$  in calorimeters

important to have MiniPlugs 
$$\checkmark \xi^{cal} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

#### Main challenge: multiple interactions spoiling diffractive signatures use $\xi^{cal} < 0.1$ to reject overlap events $\rightarrow$ non-diffractive contributions

# Methods: ξ distributions



1

MP calorimeters allow to separate diffractive and non-diffractive parts


# Methods and Challenges: $\xi$ with RPS and calorimeter info





### **Elastic Scattering**



The particles after scattering are the same as the incident particles  $\xi = \Delta p/p = 0$  for elastic events;  $t = -(p_i - p_f)^2$ 

The cross section can be written as:

$$\frac{d\sigma/dt}{(d\sigma/dt)|_{t=o}} = e^{bt} \cong 1 - b(p\theta)^2$$

| $\sqrt{s}$        | Exp. | t-range [GeV <sup>2</sup> ] | $B[\text{GeV}^{-2}], \rho$                |
|-------------------|------|-----------------------------|-------------------------------------------|
| $546\mathrm{GeV}$ | CDF  | $0.025 \div 0.08$           | $B = 15.28 \pm 0.58$                      |
| $1.8{ m TeV}$     | CDF  | $0.04 \div 0.29$            | $B = 16.98 \pm 0.25$                      |
|                   | E710 | $0.034 \div 0.65$           | $B = 16.3 \pm 0.3$                        |
|                   |      | $0.001 \div 0.14$           | $B = 16.99 \pm 0.25$                      |
|                   |      |                             | $\rho = 0.140 \pm 0.069$                  |
|                   | E811 | $0.002 \div 0.035$          | using $\langle B \rangle_{\rm CDF, E710}$ |
|                   |      |                             | $\rho = 0.132 \pm 0.056$                  |
| $1.96{\rm TeV}$   | DØ   | $0.9 \div 1.35$             |                                           |



#### Fig. fromTOTEM publications



### Elastic Scattering at $\sqrt{s}=1.96$





□There are eight quadrupole spectrometers (Up, Down, In, Out) on the outgoing proton (P) and anti-proton (A) sides each comprised of two detectors (1, 2)

**Use Tevatron lattice and scintillating fiber hits to reconstruct**  $\xi$  and |t| of scattered protons (anti-protons)

The acceptance for |t| > |tmin| where  $t_{min}$  is a function of pot position: for standard operating conditions  $|t| > 0.8 \text{ GeV}^2$ 

September 2-6, 2013



### Elastic Scattering at √s=1.96



Phys. Rev. D 86, 012009 (2012)

□In 2005 DØ proposed a store with special optics to maximize the |t| acceptance of the FPD

□In February 2006, the accelerator was run with the injection tune,  $\beta^* = 1.6m$  (instead of nominal 0.35 m)

Only 1 proton and 1 anti-proton bunch were injected

Separators OFF (no worries about parasitic collisions with only one bunch)

□Integrated Luminosity (**30 ±4 nb-1**) was determined by comparing the number of jets from Run IIA measurements with the number in the Large  $\beta^*$ store

□A total of 20 million events were recorded with a special FPD trigger list



**Elastic Scattering** at √s=1.96



Phys. Rev. D 86, 012009 (2012)

Elastic events have tracks in diagonally opposite spectrometers



Momentum dispersion in horizontal plane results in more halo (beam background) in the IN/OUT detectors, so concentrate on vertical plane AU-PD and AD-PU to maximize |t| acceptance while minimizing background

#### AU-PD combination has the best |t| acceptance



September 2-6, 2013

### Hard Single Diffraction





#### **Diffractive signature:**

- large rapidity gap
- intact pbar detected in RPS

Can study diffractive production of high p<sub>T</sub> objects: jets, W, J/Ψ, b different insight into the nature of Pomeron

#### Method: measure ratio of diffractive to non-diffractive production

September 2-6, 2013

### **Diffractive Structure Function**

#### **Diffractive dijet cross section**

$$\sigma(\overline{p}p \to \overline{p}X) \approx F_{jj} \otimes F_{jj}^{D} \otimes \hat{\sigma}(ab \to jj)$$

Study the diffractive structure function

 $\mathbf{D}$ 

 $F_{ii}^{D} = F_{ii}^{D}(x, Q^{2}, t, \xi)$ 

at LO 
$$R_{\frac{SD}{ND}}(x,\xi) = \frac{\sigma(SD_{jj})}{\sigma(ND_{jj})} = \frac{F_{jj}(x,Q^{2},\xi)}{F_{jj}(x,Q^{2})}$$
  
Data known PDF  
Will factorization hold at the Tevatron?





### Diffractive Structure Function Diffractive dijets







#### **Diffractive signature:** intact pbar detected in RPS



### **Diffractive Structure Function Diffractive dijets**





46

### **Diffractive Structure Function Diffractive dijets**



D  $\bigcirc$ 

#### **Diffractive signature:** intact pbar detected in RPS

 $\beta$  - momentum fraction of parton in pomeron

**Factorization breakdown between HERA and Tevatron** 

#### Hard Single Diffraction – example diffractive b production р





### Hard Single Diffraction – example – diffractive $J/\psi(\rightarrow \mu^+\mu^-)$



PRL 87, 241802 (2001)

p<sub>T</sub><sup>μ</sup> >2 GeV/c |η|<1.0 3.05< M<sub>μμ</sub> <3.15 GeV/c<sup>2</sup> √ s= 1.8TeV

#### **Diffractive signature:** large rapidity gap





## Hard Single Diffraction





Fraction: R≡SD/ND ratio @ 1800 GeV

#### **Diffractive signature:**

large rapidity gap – slightly different gap definitions method used as a model for LHC analyses

| Hard component | Fraction (R)% |
|----------------|---------------|
| Dijet          | $0.75\pm0.10$ |
| W              | $1.15\pm0.55$ |
| b              | $0.62\pm0.25$ |
| J/ψ            | $1.45\pm0.25$ |

All fractions ~ 1% (differences due to kinematics) ➤ ~ uniform suppression

# The Diffractive Structure Function diffractive dijets



√ s= 1.96 TeV

#### PRD 86, 032009 (2012)



# The Diffractive Structure Function diffractive dijets

√ s= 1.96 TeV

#### PRD 86, 032009 (2012)





### Kinematic Distributions for SD dijets



SD and ND dijets have similar  $E_T$  distributions



The multiplicity distributions in MP



SD dijets are more back to back

## t distribution



PRD 86, 032009 (2012)



### **Background evaluation**



#### Taking advantage of asymmetrical position of RPS



■background level: region of Y<sub>track</sub>>Y<sub>o</sub> data for |t|>2.3 (GeV/c)<sup>2</sup>

### t distributions for SD





Search for diffraction minimum around t of 2.5 GeV<sup>2</sup>?

### Example: Diffractive W/Z Production



#### Diffractive W/Z production probes the quark content of the Pomeron

 to Leading Order the W/Z are produced by a **quark** in the Pomeron



production by gluons is suppressed by a factor of  $\Omega_{s}$ and can be distinguished by an associated jet p р

# Diffractive W Production



# Identify diffractive events using Roman Pots:

accurate event-by-event  $\xi$  measurement no gap acceptance correction needed can still calculate  $\xi^{cal}$ 

$$\xi^{cal} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

In W production, the difference between  $\xi^{cal}$  and  $\xi^{RP}$  is related to missing  $E_T$  and

$$\eta_v$$

$$\xi^{RP} - \xi^{cal} = \frac{E_T}{\sqrt{s}} e^{-\eta_v}$$

**allows to determine:** neutrino and W kinematics x<sub>bi</sub> Phys. Rev. D 82, 112004, 2010



reconstructed diffractive W mass

# **Diffractive W Production**





ξ<sup>cal</sup> < ξ<sup>RP</sup> requirement removes most events with multiple pbar-p interactions

50 < M<sub>W</sub> < 120 GeV/c<sup>2</sup> requirement on the reconstructed W mass cleans up possible mis-reconstructed events

#### **Fraction of diffractive W**

R<sub>w</sub> (0.03<ξ<0.10, |t|<1)= [0.97 ±0.05(stat) ±0.10(syst)]% consistent with Run I result, extrapolated to all ξ

## **Diffractive Z Production**



Phys. Rev. D 82, 112004, 2010 → ee/μμ 37 diffractive  $Z \rightarrow ee/\mu\mu$  candidates =0.6 fb<sup>-1</sup> vents /(2 GeV/c<sup>\*</sup> 1 1 1 1 (RP track,  $\xi^{cal}$ <0.1) 80 60 40 20 70 80 90 Z→ ee/µµ st 102 102 BP track ⊢ RP track, ξ<sup>cal</sup><0.1 estimate 11 overlap-ND+SD background events ND (norm -1<log <-0.4) based on ND Ecal distribution

#### Fraction of diffractive Z R<sub>7</sub> (0.03< ξ <0.10, |t|<1)= [0.85±0.20(stat) ±0.08(syst)]%



### W/Z Results



 $R^{W}$  (0.03 <  $\xi$  < 0.10, |t|<1)= [0.97 ± 0.05(stat) ± 0.11(syst)]%

**Run I:** R<sup>W</sup> (ξ<0.1)=[1.15±0.55] % → 0.97±0.47 % in 0.03 < ξ < 0.10 & |t|<1

 $R^{z}(0.03 < x < 0.10, |t| < 1) = [0.85 \pm 0.20(stat) \pm 0.11(syst)]\%$ 

#### CDF/DØ Comparison – Run I ( $\xi < 0.1$ )

CDF PRL 78, 2698 (1997) R<sup>w</sup>=[1.15±0.51(stat)±0.20(syst)]% gap acceptance A<sup>gap</sup>=0.81

Uncorrected for Agap

R<sup>w</sup>=(0.93±0.44)%

DØ Phys Lett B **574**, 169 (2003) R<sup>w</sup>=[5.1±0.51(stat)±0.20(syst)]% gap acceptance A<sup>gap</sup>=(0.21±4)%

Uncorrected for Agap

R<sup>w</sup>=[0.89+0.19-0.17]%

R<sup>z</sup>=[1.44+0.61-0.52]%

This analysis is a good example of agreement between RPS and large rapidity gap identification methods

## **Double Diffraction**

#### **Diffractive signature:**

large central rapidity gap – slightly different gap definitions Bjorken's estimate of gap "survival" probability  $\langle S \rangle \sim 0.1$ PRD 47, 101, 1993







# Central Gaps in Run I



#### PRL 80, 1156, 1998



September 2-6, 2013

# Rapidity Gaps in Minbias Events



#### PRL 87, 141802 (2001)



September 2-6, 2013

Christina Mesropian



To compare gap probability in soft and hard DD dissociation:

reconstruct  $\Delta \eta$  in both cases require events to have gap in CCAL  $|\eta| < 1.1 \rightarrow \Delta \eta > 2 \rightarrow$ significant DD contribution

require opposite side MP jets for hard DD, with  $E_T$ >2 GeV

For this analysis we use "floating" – not-necessarily central gap

Direct comparison of the results is relatively free of syst. uncertainties.







#### Gaps:

what is under the "carpet"? - detector noise etc...

# $10^{-3} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10^{-4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 10$

Central Gaps in Soft and Hard DD

MinBias

MP\_•MP\_Jets, E\_T=> 2GeV

MP\_•MP\_ Jets, E\_T > 4GeV

3.5<| n<sup>jet1,2</sup>|<5.1



dN dn

ηmin ηmax

soft DD



#### ~10% in soft DD events and ~1% in jet events The distributions are similar in shape within the uncertainties

fixed jets

floating gap

dR<sub>948</sub> N<sub>bins</sub> (2.2<Δη<6.6) 0. 6.

Pub. Proceedings Diffraction 2008, Sep 9-14,La Londe-les Maures, France

CDF II Preliminary

 $R_{gap} \equiv N_{gap} / N_{all}$ 

CCAL gap

required

Gap Fraction in events with a CCAL gap

# Double Pomeron Exchange



#### **Diffractive signature:**

recoil pbar /large rapidity gap **AND** large rapidity gap on proton side





Inclusive DPE  $\xi$  and  $M_X^2$  distribution  $M_Y < 8 \text{ GeV/c}^2$   $R_{DPE/SD} = 0.194 \pm 0.001 (\text{stat}) \pm 0.012 (\text{syst})$   $\downarrow$ production of the second gap is relatively un-suppressed

### Multi Gap events



#### PRL 91, 011802 (2003)

#### **Diffractive signature:**

recoil pbar **AND** large rapidity gap on proton side





#### would be interesting to study at LHC



second gap production is not suppressed

### **Central Exclusive Production**

See very nice review by Mike Albrow on Tuesday

suppression at LO of the р >D background sub-processes (J<sub>7</sub>=0 selection rule) exclusive channel"  $\rightarrow$ clean signal p р • At the Tevatron we use similar processes with larger cross sections to test and calibrate theor. predictions Dijets, γγ, D χc

September 2-6, 2013

I HC

CDF

# **Exclusive Dijet Production**



#### Run I



#### CDF limit of σ<sub>excl</sub><3.7 nb(95% CL)

### Run II

#### Method:

Select inclusive diffractive dijet events produced by DPE  $p+\overline{p} \rightarrow IP + IP \rightarrow \overline{p} + X(\geq 2 \text{ jets}) + gap$ 



 $M_{_{jj}}$  - dijet mass,  $M_{\rm X}$  - mass of system X

# Observation of Exclusive Dijet Production







Observe excess over inclusive DPE dijet MC's at high dijet mass fraction Signal at  $R_{jj}=1$  is smeared due to shower/hadronization effects, NLO  $gg \rightarrow ggg, qqg$  contributions

September 2-6, 2013
## **Exclusive Dijets**





(ExHuME) shows good agreement

September 2-6, 2013

fit

# Heavy Flavor Suppression

→ LO exclusive gg →qq̄ suppressed (J<sub>Z</sub> =0 rule)
 → Look for heavy flavor jet suppression relative to inclusive dijets at high Rjj



Christina Mesropian





## **Exclusive Di-photon Production**



#### PRL 108, 081801 (2012)



Observed 43 events >> 5  $\sigma$ 

 $\sigma_{\gamma\gamma
m excl.}^{|\eta|<1, E_T>2.5 
m GeV} = 2.48 \pm 0.42 (
m stat) \pm 0.41 (
m sys) \, 
m pb$ 

Good agreement with the theoretical predictions



### CONCLUSIONS

We have very extensive program of diffractive studies at the Tevatron – new forward detectors R&D, new methodologies developed, many pioneering measurements performed.

So what is in the future?

✓ expect more results on central exclusive production!
 ✓ more diffractive measurements from the Tevatron energy scan data – soft DD production(?)
 ✓ new types of measurements - MPI in Diffractive events?
 ✓ new MC tools became available – can apply to existing data...

### Ref: Papers on diffraction at CDF

#### Soft Diffraction

Double Pomeron Exc. PRL 93,141603 (2004) Multi-Gap Diffraction

PRL 91, 011802 (2003)

Single Diffraction PRD 50, 5355 (1994)

#### Double Diffraction PRL 87, 141802 (2001)

#### Hard Diffraction

#### Dijets:

1.8 TeV PRL 85, 4217 (2000) 1.96 TeV PRD 77, 052004 (2008) 1.96 TeV PRD 86, 032009 (2012)

#### **Di-photons**

1.96 TeV PRL 108, 081801 (2012) 1.96 TeV PRL 99, 242002 (2007) Charmonium

1.96 TeV PRL 102, 242001 (2009)

#### **Rapidity Gap Tag**

WPRL 78, 2698 (1997)DijetsPRL 79, 2636 (1997)b-quarkPRL 84, 232 (2000)J/ΨPRL 87, 241802 (2001)

#### Roman Pot Tag

#### Dijets:

1.8 TeV PRL 84, 5043 (2000)

630 GeV PRL 88, 151802 (2002) W/Z:

1.96 TeV PRD 82,112004 (2010)

#### Jet-Gap-Jet

1.8 TeV PRL 74, 855 (1995) 1.8 TeV PRL 80, 1156 (1998) 630 GeV PRL 81, 5278 (1998)

## The Diffractive Structure Function





## But, do we have a pomeron exchange?

reggeon contribution ~  $\xi$  pomeron contribution ~ 1/  $\xi \rightarrow$ 

SD dijets – pomeron only, though  $\xi$  values are moderately large

 $\mathbf{F}_{jj}^{D} = \mathbf{C}\boldsymbol{\beta}^{-n}\boldsymbol{\xi}^{-m}$ Regge factorization holds **pomeron exchange** 

for  $\beta < 0.5$   $n = 1.0 \pm 0.1$  $m = 0.9 \pm 0.1$ 

## Elastic Scattering at $\sqrt{s}$ =1.96



#### **Comparison with CDF and E710**



## Dynamic alignment of the RPS



