MULTIJET PRODUCTION IN DIS AT HERA

Makarenko Inna DESY/Hamburg Uni.

WE-Heraeus-Summerschool Heidelberg September 2013

HERA

ep collider
E_{CMS} = 318 GeV
Operating period: 1992-2007

- Four experimental halls
- Two collider experiments: H1 and <mark>ZEUS</mark>
- Two data taking periods: HERA I and HERA II
 - \succ Integrated $\mathcal{L} \approx$ 0.5 fb⁻¹

KINEMATIC AT HERA

• Centre-of-mass energy

 $\sqrt{s} = \sqrt{(l+p)^2}$

• Virtuality of the exchanged boson

 $Q^2 = -q^2 = -(l-l')^2$

• Inelasticity of the scattering process $y = \frac{Pq}{Pl}$ • Bjorken scaling variable $\chi_{Bj} = \frac{Q^2}{2Pq}$

• Photoproduction: $P_{0}^{2} < 1 \text{GeV}^{2}$ • DIS: $Q_{0}^{2} > 1 \text{GeV}^{2}$

INTRODUCTION

Two processes contribute in lowest order QCD:

QCD-Compton

p \overline{q} \overline{q} \overline{q} \overline{q} X

Boson-gluon fusion

• Goal:

- Stringent tests of pQCD
- Measurement of the cross sections ratio, R_{3/2}, of the inclusive trijet and dijet production at high Q² NC DIS

• Motivation:

> $R_{3/2}$ allows an extraction of value of α_s with partially reduced systematic uncertainties

INTRODUCTION

Examples of **trijet** production diagrams:

• Goal:

- Stringent tests of pQCD
- > Measurement of the cross sections ratio, $R_{3/2}$, of the inclusive trijet and dijet production at high Q^2 NC DIS
- Motivation:
 - \succ $R_{3/2}$ allows an extraction of value of $\alpha_{\rm s}$ with partially reduced systematic uncertainties

DATA & MC

- HERA II data sample: e⁻ p($\mathcal{L} \approx 186 \text{ pb}^{-1}$) & e⁺p($\mathcal{L} \approx 106 \text{ pb}^{-1}$)
- MC: LEPTO(default) & ARIADNE

 Jet searched using the longitudinal invariant k⊥ cluster algorithm in the Breit frame

Breit frame

• Phase space

- $> 125 < Q^2 < 20000 \text{ GeV}^2$
- ▶ 0.2 < y < 0.6</p>
- $\succ E_{T,Breit}^{jet} > 8 GeV \text{ and } -1 < \eta_{lab}^{jet} < 2.5$
- $\rightarrow M_{ii} > 20 \text{GeV}$

• Investigated experimental uncertainty:

> Hadronic energy scale: scaling jet energy in MC by \checkmark +/-1% for $E_{\rm T,lab}^{\rm jet}$ >10 GeV and \checkmark +/-3% for $E_{\rm T,lab}^{\rm jet}$ <10 GeV

QCD PREDICTIONS

• NLO calculations:

- > NLOJET++
- > pPDF: <u>HERAPDF</u>1.5
- $\mu_{r} = \sqrt{Q^{2} + \overline{E}_{T,Breit}^{jet^{2}}}$ $\mu_{F} = Q$ $\lambda_{s} (M_{z}) = 0.1176$
- Investigated theoretical uncertainties:
 - > Hadronisation: using alternatively ARIADNE MC
 - \succ Value of $\alpha_{\!\rm s}(M_z)$: using two additional sets from the HERAPDF analysis
 - > Terms beyond NLO: varying μ_r by a factor of 2 up and down
 - > Factorisation scale: varying μ_F in the range $\frac{Q}{2} < \mu_F < 2Q$
- \circ Corrected for hadronisation and Z⁰ effects ²
- Data were corrected for QED effects

• Measured cross sections are very well described by the NLO predictions in the whole measured range

0.01

0.06

0.07

0.05

0.04 0.05 0.06 0.07 0.08

0.01

0.02

0.03

in progress

Dijets

 $\int_{-\infty}^{2} bins$

in

dσ

 $d\overline{E}_{T,Breit}^{jet}$

• Measured cross sections are reasonably described by the NLO predictions

in progress

Trijets

• NLO QCD predictions are in reasonable agreement with the measurements

 \mathbf{O}^2 bins

in

dσ

 $d\overline{E}_{T,Breit}^{jet}$

SUMMARY AND PLANS

• Summary:

- Multijet production cross sections in NC DIS at HERA have been presented
- Dijet and trijet cross sections are well described by the preliminary version of NLO predictions
- > Plans:
 - Investigate theoretical and experimental uncertainties in detail
 - > Measure cross sections ratio, $R_{3/2}$, of the inclusive trijet and dijet production
 - > Extract value of α_s

η is closely related to the angular dependent parts of the QCD matrix element
 log₁₀(ξ) represents the momentum fraction of the parton entering the hard process

dσ

d

dσ

 $d\log_{10}(\xi)$

• NLO QCD predictions are in good agreement with the measurements