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Central elements of PHOJET
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Two-component pomeron 

only one pomeron with soft and hard contributions
topological identification of different terms (Dual Parton Model)
soft and hard partons differ in impact parameter distribution
application of existing parton density parametrizations
initial and final state radiation (leading-logQ2 parton showers)

Attempt to treatment diffraction consistently
unitarization with two-channel eikonal model
enhanced pomeron graphs (only lowest order)
Abramovski-Gribov-Kancheli (AGK) cutting rules satisfied

Can be considered as MC implementation of
Dual Parton Model (Capella et al.)
Quark-Gluon String Model (Kaidalov et al.)
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Soft interactions: color flow topologies (i)

Partons only asymptotically free !

quark

anti-quark

Example: 
meson propagation

time

q

qq

q

qScattering process:

p

π π

p
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Soft interactions: color flow topologies (ii)

qq

q

q

q

Pomeron exchange
cylinder topology (does not depend 
on flavour of scattering particles)

q

qq

q

q

Reggeon exchange
flat topology (dependence 
on valence quark combinatorics)

time
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Unitarity cuts (optical theorem)
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Unitarity cut of Reggeon
exchange: chain of hadrons

Pomeron exchange:
two strings of hadrons

elastic scattering inelastic scattering
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QCD color flow configurations (i)

Partonic view:

di−quark

quark

Color flow:

qq
q

q

qq

gluon

One-gluon exchange: 
two color fields (strings) 
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QCD color flow configurations (ii)

Initial and final state radiation
does not change topology

Partonic view:

di−quark

quark

Color flow:

qq
q

gluon

qq

q
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Other predicted color flow configurations

Partonic view:

di−quark

quark

Color flow:

q

qq

qq

q

Two-gluon exchange: 
diffraction dissociation
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Rapidity y

dN/dy

rapidity gap

At very high energy (multi-gluon exchange): 
Almost 50% of all events are elastic/diffractive scattering
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Unitarization and AKG cutting rules
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where the energy-dependent slope bAB is given by (3.20). The two-pomeron contribu-
tion to the total AB scattering cross section being proportional to the imaginary part
of the amplitude is negative. Furthermore, the two-pomeron cross section rises with
one power of s∆IP faster with the energy than the one-pomeron amplitude (3.4).

a) b) c)

B

A

Figure 3.4: Examples of the enhanced graphs: a) triple-pomeron graph (high-mass
intermediate state on photon side), b) triple-pomeron graph (high-mass intermediate
state on hadron side), c) loop pomeron graph (high-mass intermediate states on both
sides).

Qualitatively, the same results are obtained evaluating the the graphs involving the
second term of (3.23) with includes high-mass intermediate states (so called enhanced
graphs). These graphs are characterized by pomeron self-couplings as shown in Fig. 3.4.
The calculation of the corresponding amplitudes is straightforward. The results are
summarized below.

• Triple-pomeron (TP) graph (Fig. 3.4 a) and b), the formulae below refer to a)):
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• Loop-pomeron (LP) graph (Fig. 3.4 c)):
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, (3.31)

Other graphs explicitly calculated in PHOJET (and DPMEJT III)

(Abramovskii, Gribov, 
Kancheli 1974)

Weights:   (-1)                   (+4)                          (-2)            

Unitarity cut

elastic 
scattering

inelastic 
scattering
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Inclusion of low-mass diffraction dissociation
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Two-channel model (Kaidalov Phys Rep. 50 (1979) 157)
A

A*

A

A*

A B

A

B

B*

B*

PHOJET
matrix formalism to calculate cross section
not all low-mass states allow (quantum numbers)

Example: low-mass single diffraction dissociation
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It should be mentioned that bTP
eff and bLP

eff are effective slopes of the uncut graphs
shown in Fig. 3.4 a) and b) and equivalent to the slopes (3.29,3.31) of the differential
amplitudes. They differ from the diffractive slopes bSD and bDD (see Eqs. (3.28,3.31))
relevant for the description of single and double diffraction dissociation.

The calculation of the Born graph cross section of the double-pomeron graph (shown
in Fig. 3.5, scattering of particle A off B) yields after applying the substitution

M2
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s
(A.17)

and integration of Eq. (3.36) over tA, tB, and sA
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where the limits smin
A and smax

A for the sA integration are not further specified. These
limits depend on the processes to be studied (see Sec. 6.3). The final integration over
M2

CD is done numerically.

The t-dependence of the integrated amplitude is approximated by the slope bDP
AB (see

Eq. (3.38)) evaluated with the logarithmic average of sA and sB for the cuts considered.

A.2 Two-channel formalism

For each interacting particle, two generic hadronic states are taken into account

|A, B〉 ∼





1
0
0
0


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

0
1
0
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

 |A, B!〉 ∼





0
0
1
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
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

0
0
0
1



 .

(A.19)
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Hence, the result of the eikonal matrix exponentiation can be written as linear combi-
nation of the exponentiated eigen values

χ(1) = χ(A) + χ(B) − χ(C) − χ(D)

χ(2) = χ(A) − χ(B) + χ(C) − χ(D)

χ(3) = χ(A) − χ(B) − χ(C) + χ(D)

χ(4) = χ(A) + χ(B) + χ(C) + χ(D) . (A.26)

The eikonal matrix χ(s, "B) (see Eq. (A.20)) is the sum of the eikonal matrices
related to the different graphs.

χ(s, "B) = χS(s, "B) + χH(s, "B)

+χTP,a(s, "B) + χTP,b(s, "B) + χLP(s, "B) + χDP(s, "B) (A.27)

All these matrices commute with each other. The sequence of the different eikonal
terms in the exponent of (3.49) has no influence on the final result. Therefore, partial
cross sections for different processes can be calculated by factorizing out the relevant
eikonal matrix χi(s, "B) (i = S, H, TP, LP, and DP) and diagonalizing these matrix
separately.

A.2.1 Hadron-hadron scattering

Here the amplitudes are given for the hadrons A and B which may be different. If
they are identical, some further simplifications of the final expressions are possible, for
example due to χ(1) = χ(2).

The elastic amplitude in impact parameter representation reads

〈A, B| a(s, "B) |A, B〉 = 1 − 1

4

{
e−χ(1)

+ e−χ(2)
+ e−χ(3)

+ e−χ(4)
}

. (A.28)

The amplitudes necessary to calculate diffractive processes are given by:
• low-mass single diffraction dissociation of particle A

〈A", B| a(s, "B) |A, B〉 =
1

4

{
−e−χ(1)

+ e−χ(2)
+ e−χ(3) − e−χ(4)

}
(A.29)

• low-mass single diffraction dissociation of particle B

〈A, B"| a(s, "B) |A, B〉 =
1

4

{
+e−χ(1) − e−χ(2)

+ e−χ(3) − e−χ(4)
}

(A.30)

• low-mass double diffraction dissociation

〈A", B"| a(s, "B) |A, B〉 =
1

4

{
+e−χ(1)

+ e−χ(2) − e−χ(3) − e−χ(4)
}

(A.31)
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• low-mass single diffraction dissociation of particle B

〈A, B"| a(s, "B) |A, B〉 =
1

4

{
+e−χ(1) − e−χ(2)

+ e−χ(3) − e−χ(4)
}

(A.30)

• low-mass double diffraction dissociation

〈A", B"| a(s, "B) |A, B〉 =
1

4

{
+e−χ(1)

+ e−χ(2) − e−χ(3) − e−χ(4)
}

(A.31)
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In order to sum all eikonal graphs involving different configurations of particles or
resonances the eikonal function χ(s, "B) is written as the matrix

χ(s, "B) =





χ(A) χ(B) χ(C) χ(D)

χ(B) χ(A) χ(D) χ(C)

χ(C) χ(D) χ(A) χ(B)

χ(D) χ(C) χ(B) χ(A)





(A.20)

with
χ(A) = χ(A, B → A, B) = χ(A!, B → A!, B)

= χ(A, B! → A, B!) = χ(A!, B! → A!, B!)

χ(B) = χ(A!, B → A, B) = χ(A, B → A!, B)
= χ(A, B! → A!, B!) = χ(A!, B! → A, B!)

χ(C) = χ(A, B! → A, B) = χ(A, B → A, B!)
= χ(A!, B → A!, B!) = χ(A!, B! → A!, B)

χ(D) = χ(A!, B! → A, B) = χ(A, B → A!, B!)
= χ(A!, B → A, B!) = χ(A, B! → A!, B) .

(A.21)

Then the eikonal amplitude reads

a(s, "B) =
i

2
(1 − e−χ(s, #B)) . (A.22)

Using the transformation matrix U

U =
1

2





−1 −1 1 1
−1 1 −1 1

1 −1 −1 1
1 1 1 1



 (A.23)

one can write (diagonalizing χ(s "B))

a(s, "B) =
i

2
U (1 − e−χdiag(s, #B)) UT (A.24)

with

χdiag(s, "B) = UT χ(s, "B) U

= diag(χ(A) + χ(B) − χ(C) − χ(D),χ(A) − χ(B) + χ(C) − χ(D),

χ(A) − χ(B) − χ(C) + χ(D),χ(A) + χ(B) + χ(C) + χ(D)) .

(A.25)
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Single and double diffraction dissociation
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Figure 3.11: High-mass single diffrac-
tion: a) diffractive cut of the triple-
pomeron graph, and b) corresponding par-
ticle production graph. Drawn is the com-
bination with additional low-mass excita-
tion of B.
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Figure 3.12: High-mass double diffrac-
tion: a) diffractive cut of the loop-
pomeron graph, and b) corresponding par-
ticle production graph.

The differential cross sections for the high-mass double diffraction can be written
as (see Fig. 3.12)
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Figure 3.13: Central diffrac-
tion: a) diffractive cut of the double-
pomeron graph, and b) the corre-
sponding particle production graph.

Finally, the expression for central diffraction dissociation (double-pomeron scatter-
ing, see Fig. 3.13) is given

dσDP
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dt1ds1dt2ds2
=

1

256π2

1
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s
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)∆ĨP
(

s
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× 1
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(
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) 1

s2
exp

(
bCD
B t2

)
. (3.99)

The kinematic cuts and the integrated cross sections are given in Appendix A.1.
In photon induced interactions, it is assumed that the photon fluctuates into a virtual
qq̄- or qq̄"-state which interacts like an ordinary hadron.
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(
s0

M2
D1
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Finally, the expression for central diffraction dissociation (double-pomeron scatter-
ing, see Fig. 3.13) is given

dσDP
AB

dt1ds1dt2ds2
=

1

256π2

1

s0

(
s

s0

)∆ĨP
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The kinematic cuts and the integrated cross sections are given in Appendix A.1.
In photon induced interactions, it is assumed that the photon fluctuates into a virtual
qq̄- or qq̄"-state which interacts like an ordinary hadron.
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Elastic scattering and low-mass diffraction dissociation

In elastic hadron-hadron interactions, the momentum transfer is sampled from an ex-
ponential distribution with the slope 2b (see Eq. (3.33)).

In case of quasi-elastically produced qq̄-states in photon-hadron or photon-photon
interactions, the outgoing vector mesons and the isotropic π+π−-background are sam-
pled according to the ratios

ρ0 : ω : φ : π+π− = 75% : 8% : 9% : 8% . (3.94)

The mass distributions of the vector mesons are approximated by relativistic Breit-
Wigner resonance formulae

dσq−el,V

dm2
∼ ΓV

(m2 − m2
V )2 + m2

V Γ2
V

, (3.95)

where mV and ΓV are the mass and the decay width of the vector meson V . Considering
ρ0 photoproduction, the interference with the isotropic π+π−-background [133,134]
cannot be neglected. In the model, the mass of quasi-elastically produced ρ0 mesons
is sampled from the Ross-Stodolsky parametrization [134]

dσq−el,ρ

dm2
∼ Γ(m2)

(m2 − m2
ρ)

2 + m2
ρΓ

2(m2)

(
mρ

m

)n

with Γ(m2) = Γρ

(
m2 − 4m2

π

m2
ρ − 4m2

π

)3/2

.

(3.96)
Here, mπ and Γρ denote the pion mass and ρ0 decay width. For the exponent n of the
Ross-Stodolsky factor (mρ/m), the value n = 4.2 is used [135].

The momentum transfer is sampled from an exponential distribution with the mass
dependent slope 2b as given in Eq. (3.33). This slope parametrization gives a steady
transition from elastic scattering to single as well as double diffractive dissociation. For
quasi-real photons, the ρ0 mass is used for the incoming particle mass instead of the
photon virtuality since it acts as hadronic scale of the photon.

To take into account the transverse polarization of the incoming photon, the decay
of the quasi-elastically produced vector mesons into two or three particles is done in
helicity frame using the angular distributions given in [4,136].

The resonances generated in case of processes with qq̄#- or A#-final states are given
in App. C.1.

High-mass diffraction

In single diffractive dissociation, the mass MD and the momentum transfer t of the
diffractively produced particle system are calculated according to the triple-pomeron
approximation. For example, high-mass diffraction dissociation of particle A in AB
scattering is considered. The double-differential cross section reads (see Fig. 3.11)

d2σTP
AB

dt dM2
D

=
1

16π

(
g0

BIP

)2
g0

3IP g0
AIP

(
s

s0

)2∆ĨP

(
s0

M2
D

)αĨP (0)

exp
(
bSD
ABt

)
. (3.97)
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a) c)b)

Figure 3.6: The total discontinuity of the triple-pomeron graph can be approximated
by the sum of three cuts: a) the diffractive cut describing high-mass diffraction (AGK
weight -1), b) the one-pomeron cut (AGK weight 4), and c) the two-pomeron cut (AGK
weight -2).

b) c)

d) e) f)

g) h) i)

a)

Figure 3.7: Breakdown
of the total discontinuity of
the double-pomeron graph.

different final state configurations and one obtains a better convergence of the expansion
Eq. (3.61). The discontinuity of the double-pomeron graph can be resolved into 9
different cut configurations. The corresponding AGK weight factors can be derived by
considering this graph as a triple-pomeron insertion in another triple-pomeron graph.
In Fig. 3.7 the interpretation of the cuts is the following: a) describes central diffraction
dissociation, b) - d), g) belong to diffraction, e) counts as one-pomeron cut, f) and h)
are two-pomeron cuts, and i) is taken as a three-pomeron cut.

After re-summation of the cuts of the enhanced graphs according to the number
of cut pomerons, all the n-pomeron cut cross sections are positive. For example, the
cross section σ1 for one cut soft pomeron is given by

σ1(s) = σ(1, 0, 0, 0; s) + 4 σ(0, 0, 1, 0; s) + 16 σ(0, 0, 0, 1; s)

= σ(1, 0, 0, 0; s)− 4 |σ(0, 0, 1, 0; s)|+ 16 σ(0, 0, 0, 1; s), (3.63)

where the cut shown in Fig. 3.7 e) compensates partially the negative contributions of
the triple- and loop-pomeron cuts (Fig. 3.6 b)). Eq. (3.63) shows clearly that even a
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Diagrams for pomeron-pomeron scattering
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a) c)b)

Figure 3.6: The total discontinuity of the triple-pomeron graph can be approximated
by the sum of three cuts: a) the diffractive cut describing high-mass diffraction (AGK
weight -1), b) the one-pomeron cut (AGK weight 4), and c) the two-pomeron cut (AGK
weight -2).

b) c)

d) e) f)

g) h) i)

a)

Figure 3.7: Breakdown
of the total discontinuity of
the double-pomeron graph.

different final state configurations and one obtains a better convergence of the expansion
Eq. (3.61). The discontinuity of the double-pomeron graph can be resolved into 9
different cut configurations. The corresponding AGK weight factors can be derived by
considering this graph as a triple-pomeron insertion in another triple-pomeron graph.
In Fig. 3.7 the interpretation of the cuts is the following: a) describes central diffraction
dissociation, b) - d), g) belong to diffraction, e) counts as one-pomeron cut, f) and h)
are two-pomeron cuts, and i) is taken as a three-pomeron cut.

After re-summation of the cuts of the enhanced graphs according to the number
of cut pomerons, all the n-pomeron cut cross sections are positive. For example, the
cross section σ1 for one cut soft pomeron is given by

σ1(s) = σ(1, 0, 0, 0; s) + 4 σ(0, 0, 1, 0; s) + 16 σ(0, 0, 0, 1; s)

= σ(1, 0, 0, 0; s)− 4 |σ(0, 0, 1, 0; s)|+ 16 σ(0, 0, 0, 1; s), (3.63)

where the cut shown in Fig. 3.7 e) compensates partially the negative contributions of
the triple- and loop-pomeron cuts (Fig. 3.6 b)). Eq. (3.63) shows clearly that even a
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Figure 3.11: High-mass single diffrac-
tion: a) diffractive cut of the triple-
pomeron graph, and b) corresponding par-
ticle production graph. Drawn is the com-
bination with additional low-mass excita-
tion of B.
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Figure 3.12: High-mass double diffrac-
tion: a) diffractive cut of the loop-
pomeron graph, and b) corresponding par-
ticle production graph.

The differential cross sections for the high-mass double diffraction can be written
as (see Fig. 3.12)
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b)a)

s

s

1

2

A

B B

A

t

t2

1

Figure 3.13: Central diffrac-
tion: a) diffractive cut of the double-
pomeron graph, and b) the corre-
sponding particle production graph.

Finally, the expression for central diffraction dissociation (double-pomeron scatter-
ing, see Fig. 3.13) is given
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exp

(
bCD
B t2

)
. (3.99)

The kinematic cuts and the integrated cross sections are given in Appendix A.1.
In photon induced interactions, it is assumed that the photon fluctuates into a virtual
qq̄- or qq̄"-state which interacts like an ordinary hadron.
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The differential cross sections for the high-mass double diffraction can be written
as (see Fig. 3.12)
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Finally, the expression for central diffraction dissociation (double-pomeron scatter-
ing, see Fig. 3.13) is given
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The kinematic cuts and the integrated cross sections are given in Appendix A.1.
In photon induced interactions, it is assumed that the photon fluctuates into a virtual
qq̄- or qq̄"-state which interacts like an ordinary hadron.

Central diffraction dissociation
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Amplitude construction
Soft and hard part of the amplitude 
are separately defined in impact 
parameter space

13

a(n)(s,⇥B) =� i
2
(i)n 1

n!

n

�
i=1

�
2a(1)(s,⇥B)

⇥
Eikonal approximation

Interpretation as n independent one pomeron  
exchanges
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With this approximation, the n-pomeron amplitude reads (see Eq. (3.25))

A(n)(s, q2) = −i(i)n 1
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1
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)n−1 n∏
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(2π)2(n−1)
.

(3.39)
It is convenient to transform this amplitude into the impact parameter representation
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1
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)
, (3.42)

where a(1)(s, #B) = aBorn(s, #B) denotes the impact parameter amplitude of the one-
pomeron exchange. Then, the sum of all n-pomeron amplitudes reads

a(s, #B) =
∞∑

n=1

a(n)(s, #B) =
i

2

(
1 − exp

[
−χ(s, #B)

])
, (3.43)

with

χ(s, #B) = −2ia(1)(s, #B) and 2
∫

d2 #B χ(s, #B) = σBorn(s) , (3.44)

where χ(s, #B) is called eikonal function. The generalization to different interaction
processes (i.e. soft, hard, diffractive interactions) does not change general structure of
the eikonal amplitude (3.43). The eikonal function has to be substituted by the sum
of the eikonal functions for the different interaction processes.

Up to now, the inelastic intermediate states discussed in the previous section have
been neglected. However, it is known from hadron-hadron collider experiments that
the cross section for diffraction dissociation becomes comparable to the elastic cross
section at high energies [97]. In γp collisions at HERA, the cross section of photon
diffraction even exceeds the cross section of quasi-elastic ρ0 production [1,2]. Therefore,
inelastic absorptive corrections due to inelastic intermediate states are important.

In the model, the high-mass intermediate states are taken into account by including
enhanced graphs into the eikonalization. Thus, the eikonal function reads

χ(s, #B) = χS(s, #B) + χH(s, #B) + χTP(s, #B) + χLP(s, #B) + χDP(s, #B). (3.45)

Here, χi(s, #B) denotes the contributions from the different Born graph amplitudes: (S)
soft (pomeron and reggeon), (H) hard, (TP) triple-pomeron, (LP) loop-pomeron, and
(DP) double-pomeron amplitudes. The low-mass resonance structure is approximated
on the basis of a two-channel eikonal formalism [96,40]. Each eikonal function is treated
as a 4 × 4 matrix whereas the matrix elements (for instance, for AB interactions) are
defined by

〈m, n| χj(s, #B) |k, l〉 = −2iaBorn,j
k,l→m,n(s, #B), (3.46)

Eikonal vs. impact parameter aplitude

'+' soft '+' hard '-' triple-pomeron

'-' loop-
pomeron

'+' double-pomeron
      scattering

�(s,~b) = �(s,~b)S + �(s,~b)H + �(s,~b)TP

+�(s,~b)LP + �(s,~b)DP

enhanced 
graphs
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where a(1)(s, #B) = aBorn(s, #B) denotes the impact parameter amplitude of the one-
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where χ(s, #B) is called eikonal function. The generalization to different interaction
processes (i.e. soft, hard, diffractive interactions) does not change general structure of
the eikonal amplitude (3.43). The eikonal function has to be substituted by the sum
of the eikonal functions for the different interaction processes.

Up to now, the inelastic intermediate states discussed in the previous section have
been neglected. However, it is known from hadron-hadron collider experiments that
the cross section for diffraction dissociation becomes comparable to the elastic cross
section at high energies [97]. In γp collisions at HERA, the cross section of photon
diffraction even exceeds the cross section of quasi-elastic ρ0 production [1,2]. Therefore,
inelastic absorptive corrections due to inelastic intermediate states are important.

In the model, the high-mass intermediate states are taken into account by including
enhanced graphs into the eikonalization. Thus, the eikonal function reads

χ(s, #B) = χS(s, #B) + χH(s, #B) + χTP(s, #B) + χLP(s, #B) + χDP(s, #B). (3.45)

Here, χi(s, #B) denotes the contributions from the different Born graph amplitudes: (S)
soft (pomeron and reggeon), (H) hard, (TP) triple-pomeron, (LP) loop-pomeron, and
(DP) double-pomeron amplitudes. The low-mass resonance structure is approximated
on the basis of a two-channel eikonal formalism [96,40]. Each eikonal function is treated
as a 4 × 4 matrix whereas the matrix elements (for instance, for AB interactions) are
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Model parameters and Unitarization

14

PHOJET (SHERPA-SHRIMPS)

Fit to global total and elastic pp(-bar) cross 
section and elastic slope data using all 
included graphs and multiple interactions

PYTHIA

Unitarization via Eikonal
Hard cross section is calculated first. The 
difference between hard and total cross 
section is split up between soft and diffractive

Not updated since 2001 = working at LHC 
energies means working with predictions

Only one soft interaction per collision

Multiple soft, hard and diffractive interactions 
in one event possible

Multiple interactions in diffractive system

Multiple hard interactions

Soft color reconnection

Different models for event building
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Comparison with collider measurements
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452 A . Moraes et al.: P redict ion for minimum bias and t he underlying event at L H C energies

Table 4. P Y T H I A 6.214 t uned parameters for minimum bias
and t he underlying event

P Y T H I A 6.214 – t uned

ISU B : 11,12,13,28,53, Q C D 2→ 2 par tonic scat tering
68,94,95,96 + non-diffract ive + double diffract ive

MS T P (51) = 7 C T E Q 5L – selected p.d.f. (default )
MS T P (81) = 1 mult iple interact ions (default )
MS T P (82) = 4 complex scenario

+ double G aussian mat ter dist ribu t ion
PA R P (82) = 1.8 ptmin parameter
PA R P (84) = 0.5 core radius: 50% of t he

hadronic radius
PA R P (89) = 1.0 energy scale ( TeV ) used

to calculate ptmin (default )
PA R P (90) = 0.16 power of t he energy dependence

of ptmin (default )

Fig. 20. C harged mult ipli-
city dist ribu t ions for NS D pp̄
collisions at a

√
s = 200 G eV ;

b 546 G eV ; c 900 G eV and
d 1.8 TeV . I t shows compar-
isons between P Y T H I A 6.214-
t uned, P Y T H I A 6.214-default ,
P H O J E T 1.12 predict ions, and
t he data

for the underlying event distributions displayed in Fig. 22a
and b, the combined χ2 (χ2UE/100 d.o.f.) is 22.7, 2.1 and
7.4, again for PYTHIA6.214-default and tuned, and PHO-
JET1.12, respectively (Table 5).
The description of both minimum bias and under-

lying event distributions is clearly improved by using
PYTHIA6.214-tuned compared to the predictions gen-
erated by the default settings. As already indicated in
comparisons presented in previous sections, PHOJET1.12
is also considerably more accurate in describing the data
than PYTHIA6.214-default.
The distributions in Figs. 20–22 and the combined χ2

derived from both minimum bias and underlying event
distributions show that PYTHIA6.214-tuned and
PHOJET1.12 are compatible to the data. With χ2min-bias =
8.2, PHOJET1.12 generates slightly better predictions for
minimum bias event distributions than PYTHIA6.214-

Moares, Buttar, Dawson: EPJC50 (2007) 435
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Comparison with collider measurements
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Cross section fits (GJR08 parton densities)

17

Model (fit) parameters
transverse distributions
soft part of pomeron
(couplings, power law 
index)

Difficult to fit total and elastic cross section 
and elastic slope at the same time

Inclusion of real part of the scattering 
amplitude should improve situation

preliminary preliminary



A. Fedynitch & R. Engel, Heraeus school on diffractive physics, Heidelberg 09/2013

Comparison with collider measurements
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Comparison with collider measurements
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5.3.1 Diffraction in proton-antiproton interactions

Single-diffraction dissociation in pp̄ collisions at
√

s = 546 GeV was investigated ex-
perimentally by the UA4 Collaboration [263–265]. In Fig. 5.32 the charged particle
multiplicity of the diffractively decaying system is shown as function of the diffractive
mass MD. The data of the UA4 Collaboration [264] are consistent with the charged
particle multiplicity measured in non-single diffractive pp̄ interactions at

√
s = MD

[266,208,267]. The solid line in Fig. 5.32 shows the prediction of the full model includ-
ing multiple pomeron exchange in the pomeron-hadron scattering process. The dashed

Figure 5.32: Average
charged particle multiplicity in
pp̄ single diffraction dissocia-
tion. The results of the sin-
gle and multiple pomeron ex-
change models are compared
with UA4 data [264]. Shown
are also data on the aver-
age charged particle multi-
plicity in non-single diffrac-
tive proton-antiproton colli-
sions [266,208,267].

line presents the result of the one-pomeron exchange model. Both model predictions
differ considerably at high diffractive masses, however, one cannot draw a definite con-
clusion from this comparison. Of course, changing the hadronization parameters, each
of the two model results can be brought into agreement with the data.

In Fig. 5.33 the charged particle pseudorapidity distribution is shown. Again, the
predictions of the multiple and the single interaction model are compared with UA4
data [264]. Considering large diffractive masses, the multiple interaction model provides
a better description of the data. From this comparison it can also be seen that the
model overestimates the charged particle multiplicity at very large pseudorapidities.
This region is very sensitive to the diquark fragmentation function in the hadronization
model which is, up to now, not well known.

Finally it should be mentioned that hard diffractive proton-antiproton interactions
were investigated by UA8 Collaboration [268] at a c.m. energy of 630 GeV. However, the
results presented there are not corrected for acceptance [269]. Only limited information
on absolute hard diffractive cross sections is available so far [270].

98 CHAPTER 5. CONFRONTING THE MODEL WITH DATA . . .

Figure 5.33: Pseudorapidity distribution of charged particles in single diffractive pp̄
events. Phojet results are compared with UA4 data [264].

5.3.2 Diffractive photoproduction

Measurements at HERA have shown that a substantial part of minimum bias photo-
production [271,272] and deep-inelastic scattering [273,274] events exhibits diffractive
features similar to hadron-hadron interactions. First measurements of particle produc-
tion in rapidity gap events have been published [271,272,220,53], but not all of the data
are corrected for detector acceptance and allow absolute comparisons.

In the following photon diffraction dissociation is considered only. At HERA,
diffractive events are commonly characterized by the ηmax variable. ηmax is the maxi-
mum pseudorapidity of the hadronic particles scattered into the detector (which covers
roughly the range |η| < 3.5). For the comparison of model predictions with data, com-
plete hadronic final states were generated. Only events passing the ηmax cut applied in
the experiments [184,274] are considered.

In Fig. 5.34 the prediction on the transverse momentum cross section of charged
particles for rapidity gap events with ηmax < 1.5 is shown. The distribution is averaged
over the pseudorapidity range −1.5 < η < 1.5. The photoproduction selection criteria
are 0.25 < y < 0.7 and Q2 ≤ 0.01 GeV2. The cross sections refer to ep collisions.
Together with the model prediction the uncorrected data of the H1 Collaboration [271]
on charged tracks are shown. It is expected that the shape of this distribution can be
compared with calculations for transverse momenta higher than 1 GeV/c [221]. The
data are scaled in order to compare their shape to our calculation. The systematic dif-

Multiple interactions in 
"pomeron-hadron" or "pomeron-
pomeron" scattering?

other models
(PYTHIA, ...)

PHOJET
UA4, Phys. Lett. B16 (1986) 459
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Limitations & Outlook
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PHOJET (stable since ~2000)

• suited for minimum bias studies
• sensible default settings and predictions 

due to consistent unitarization
• sophisticated treatment of diffraction dissociation
• only leading order QCD processes (no W/Z etc.)
• no heavy quark production (massless production scheme)
• no dedicated high-pt physics options

New work on developing PHOJET recently started

• implementation of new parton densities
• multiplicities at energies >= LHC
• real part of scattering amplitudes
• impact parameter dependent saturation
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Backup
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Conceptual problem: matching soft/hard
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Photoproduction at HERA
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String fragmentation and rapidity

udduussdud

qq

qqqq

uud

udd

.........

uuExample: 
q-qbar pair produced 
in e+e- annihilation

time

dN
dy

rapidity y 24

Rapidity

y =
1
2

ln
E + p⇥
E�P⇥

Rapidity of massless particles

y =
1
2

ln
1+ cos�
1� cos�

=� ln tan
�
2

Pseudorapidity

� =� ln tan
⇥
2

height energy-independent,
width increases with energy



A. Fedynitch & R. Engel, Heraeus school on diffractive physics, Heidelberg 09/2013

Predictions of two-string models

Rapidity  y 

dN/dy

Two-string models:

• Feynman-scaling
• long-range correlations
• leading particle effect
• delayed threshold for 

baryon pair production

(Capella et al., Physics Reports 1994) 25

Feynman scaling 
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Minijet model: underlying ideas
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QCD parton model: minijets
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Very high parton densities (saturation?)

nucleon

nucleus pR
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Simple geometric criterion

28

Saturation:
• parton wave functions overlap
• number of partons does not 

increase anymore at low x
• extrapolation to very high energy 

unclear

size of proton
Size of 
one gluon

number of 
gluons

RHIC data very important
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Ro

R ~ log(s)2

Profile functions

hard partons

soft partons

D~b · D~p? ⇠ 1

Low energy

High energy
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soft
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exp

(
�

~b2

4R2(s)
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Hard diffraction

Hard interactions between 
diffractive mass and pomeron

Engel, Ranft, Roesler, PRD 52 (1995) 3
30

2 Description of the model

2.1 The triple–Pomeron approximation

Within Regge–theory, high–mass single diffractive processes are understood by
means of triple–Pomeron exchange (see Fig. 1). Using Reggeon field theory [22]
this graph is treated as an usual Feynman graph. The Pomerons shown in Fig. 1
are defined by propagators ξIP(t)(s/s0)αIP(t) and cannot be considered as parti-
cles [23]. In lowest order the differential diffractive cross section is given by the
unitarity cut (Fig. 1)

d2σ3IP(s, t)

dtdM2
=

1

16πs2
|gIP

11′(t)|2gIP

22 (0)Γ3IP(t, 0)|ξIP(t)|2
(

s

M2

)2αIP(t)
(

M2

s0

)αIP(0)

.

(1)
With M we denote the mass of the diffractively excited system. gIP

11′ , g
IP
22 , and

Γ3IP are the various couplings as shown in Fig. 1. ξIP(t) is the usual signature
factor

ξIP(t) = −
1 + e−iπαIP(t)

sin(παIP(t))
. (2)

αIP(t) = 1+∆+α′
IP

(0)t is the Pomeron trajectory with the intercept 1+∆, and
s0 = 1GeV2. Introducing an effective Pomeron–particle cross section [23]

σaIP
tot (M2, t) = gIP

22 (0)
Γ3IP(t, 0)

s0

(

M2

s0

)αIP(0)−1

, (3)

Eq. (1) can be interpreted as a product of a Pomeron flux factor and this cross
section

d2σ3IP(s, t)

dtdM2
=

1

16πs2
|gIP

11′(t)|2|ξIP(t)|2
s2αIP(t)

(M2)2αIP(t)−1
σaIP

tot (M2, t). (4)

To estimate the contribution of hard diffraction (an example of such a process is
shown in Fig. 2) to the single diffractive cross section, σaIP

tot can be replaced by the
hard Pomeron–hadron/photon cross section σaIP

h . We obtain σaIP
h applying lowest

order perturbative QCD, i.e. in case of hadron or resolved photon interactions

σaIP
h =

∑

i,j,k,l

1

1 + δkl

∫ 1

0
dx1

∫ 1

0
dx2

∫

dt̂
dσi,j→k,l

QCD

dt̂
f i

a(x1, Q
2)f j

IP(x2, Q
2) Θ(p⊥−pcutoff

⊥ )

(5)
and for direct photon–Pomeron interactions

σγIP

h,dir =
∑

j,k,l

∫ 1

0
dx
∫

dt̂
dσγ,j→k,l

QCD

dt̂
f j
IP

(x, Q2) Θ(p⊥ − pcutoff
⊥ ). (6)

2

Strong dependence on gluon 
distribution in pomeron PDF
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Correlation of hard cross section and impact 
parameter profile
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