PAUL SCHERRER INSTITUT

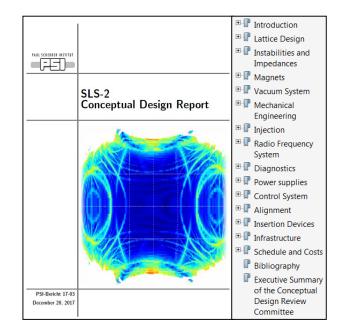
V. Schlott for the "SLS 2.0 Project Team"

SLS 2.0 Status and Diagnostics Considerations

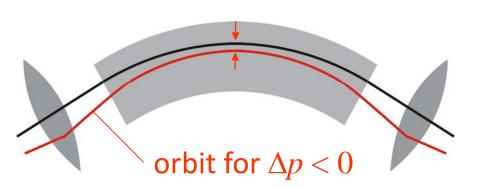
TW-DULER WS

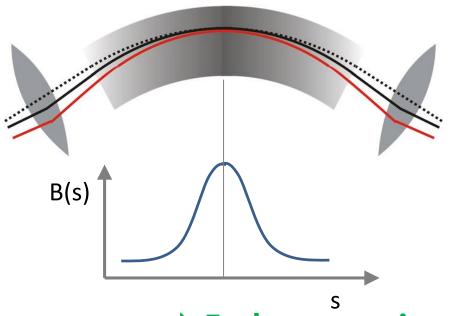
DLS, April 20th, 2018

The SLS 2.0 Upgrade includes...:


- new storage ring lattice: 12 x «7-bend achromat»
 - \rightarrow 40 50-times lower emittance (~ 100 pm @ 2.4 GeV)
 - $\rightarrow~$ 290.4 m circumference (SLS: 288 m)
 - $\rightarrow~$ 12 identical ID straights with length of 5 $^{1\!\!/_2}$ m
- Use of novel technologies
 - → compact and high field permanent magnets (LGBs)
 - → NEG-coating for vacuum chambers with 20 mm diameter
 - → Upgrade of insertion devices (cryo-undulators)
 - → new girders, renewed infrastructure, CS electronics and feedback loops
 - → improvements of beam lines and experimental stations (optics, detectors...)
 - \rightarrow many more systems, which are required for a state-of-the-art SRLS user facility...!!!

- modification of tunnel wall and roof
- beam lines have to be moved (source points)

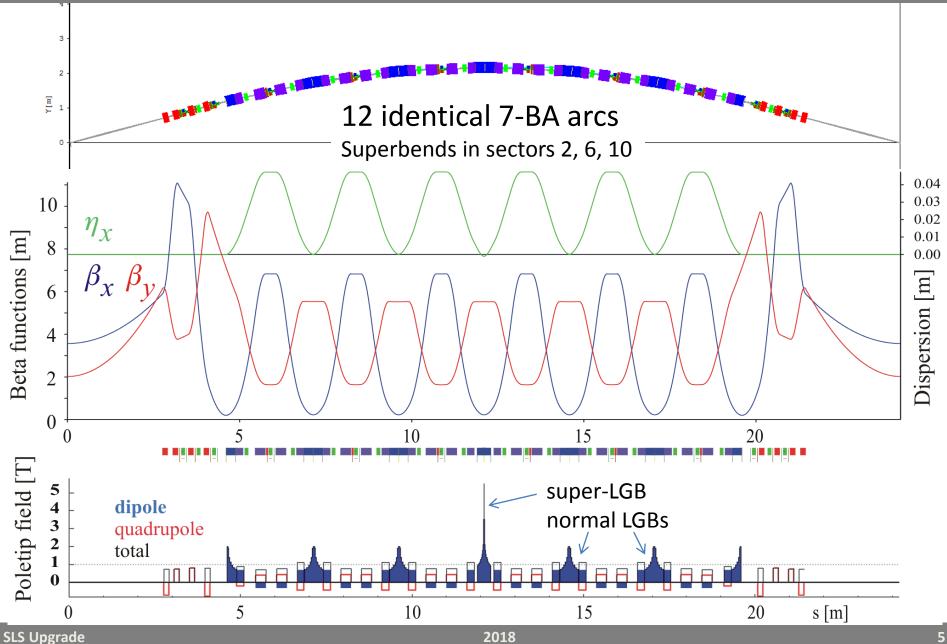



- Positive evaluation of the SLS 2.0 Conceptual Design Report by an external review committee in September 2017
- Project Proposal (Swiss Research Infrastructure Roadmap 2021 2024) has been submitted to Swiss funding agencies in January 2018
- Project costs have been estimated to 100 MCHF (machine and beam lines without salaries)
- Upgrade program has to be realized in parallel:
 - \rightarrow BPM, FOFB and MBFB systems
 - → high power and low level RF systems
 - → injector complex and electrical infrastructure
 - \rightarrow CS electronics and safety systems
 - → cooling and cryogenics systems
 - → building and its infrastructure

www.lib4ri.ch/archive/nebis/PSI_Berichte_000478272/PSI-Bericht_17-03.pdf

Novel low emittance lattice concept

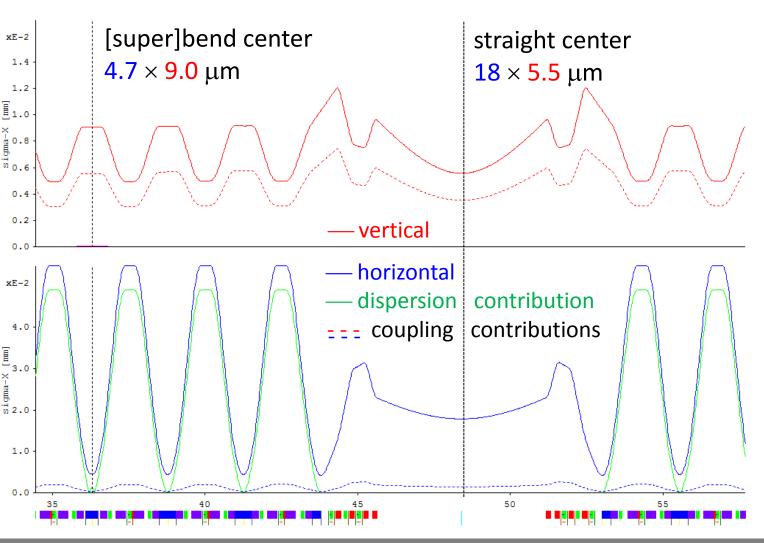
Standard periodic cell


- quadrupoles (lenses) to focus dispersion
- dispersion at center > 0

Modified periodic cell

- displaced quadrupoles
 = reverse bending magnets (RB)
- dispersion at centre → 0
 (suppression of quantum excitation)
- longitudinal field variation in dipole magnet: max. *B* at center
 longitudinal gradient bend (LGB)

⇒ 5× lower emittance than conventional cell


SLS 2.0 7-bend achromat

slide by Andreas Streun

Beam size

rms envelopes for 10% emittance coupling (no IBS) emittances 98 pm / 10 pm

Periods		3	
Length	[m]	290.400	
Angle	[deg]	360.000	
AbsAngle	[deg]	561.600	
TuneA		39.19298	
TuneB		15.30746	
ChromA		0.000	
ChromB		0.000	
Alpha	[xE-3]	-0.133	
JA		1.66685	
JB		1.04354	
Energy	[GeV]	2.400	
EmitA	[nm rd]	0.098	
EmitB	[nm rd]	0.010	
dE/turn	[keV]	554.4	
Espread	[xE-3]	1.036	
TauA	[ms]	5.031	
TauB	[ms]	8.036	
TauE	[ms]	6.503	
Location		BSOM	
Position	m	36.300	
BetaA	m	0.209	
AlphaA		0.0000	
BetaB	m	5.318	
AlphaB		0.0000	
DispX	m	-0.0012	
Disp'X	rad	0.0000	
Disp Y.			
Disp' Y	rad	0.0000	
PhiA/2pi		4.8989	
PhiB/2pi		1.9134	
curly H	m	(to do)	
OrbitX	mm	0.0000	
Orbit X'	mrad	0.0000	

Lattice parameters

slide by Andreas Streun

		side by Andreas Streun
Name	SLS*)	SLS 2.0 ^{#)}
Emittance at 2.4 GeV [pm]	5069	102 → 126 ⁺⁾
Lattice type	12×TBA	12× 7 BA
Circumference [m]	288.0	290.4
Total <i>absolute</i> bending angle	360°	561.6°
Working point Q _{x/y}	20.43 / 8.22	39.2 / 15.30
Natural chromaticities C _{x/y}	-67.0 / -19.8	-95.0 / -35.2
Optics strain ¹⁾	7.9	5.6
Horizontal damping Partition J _x	1.00	1.71
Momentum compaction factor [10 ⁻⁴]	6.56	-1.33
Radiated Power [kW] ²⁾	208	222
rms energy spread [10 ⁻³]	0.86	1.03 → 1.07 ^{•)}
damping times x/y/E [ms]	8.9 / 8.9 / 4.4	4.9 / 8.4 / 6.5

- 1) product of horiz. and vert. normalized chromaticities C/Q
- 2) assuming 400 mA stored current, bare lattice without IDs
- *) SLS lattice before FEMTO installation (<2005)
- #) SLS 2.0 with 3 superbends

including intra-beam scattering for 1 mA bunch current (400 mA in 400 of 484 buckets; 500 MHz), 10 pm vertical emittance, 1.4 MV RF voltage, 3rd harmonic cavity for 2.2×bunch length.

Challenges for a low emittance ring in a very limited space

- **Dynamic Acceptance:** sufficient life time and injection efficiency
 - \rightarrow can be achieved with discrete correctors (not combined with sextupoles)
- **<u>Beam current:</u>** stability with regard to impedances
 - \rightarrow probably ok for 500 nm NEG-coating (still under investigation)
- Magnets: field strength, compactness and field quality
 - → permanent and electro magnet designs under consideration handicapped by space restriction \rightarrow iterative lattice design
- <u>Girder System</u>: positioning accuracy and stability
 - \rightarrow can be achieved with modern design tools and mineral cast technique
- <u>Vacuum System:</u> compactness, pressure and impedance
 - → establishment of NEG-coating technique for 20 mm chamber diameter
- <u>Injection</u>: efficiency and reliability in off-axis top-up injection
 - → modified 3-bump scheme using anti-septum

Overview of SLS 2.0 Diagnostics

Diagnostics System	#	Remarks	Status
Beam Position Monitor (BPM)			
- Storage Ring Pick-Up	144	120 storage ring BPM pick-ups plus 24 ID interlock BPMs	dark period
- Storage Ring Electronics	144	consists of RF front ends and digital back ends (BPM electronics under design)	2021 +
- Injector Electronics (SLS-2.0 upgrade program)	63	55 for booster, 9 for LINAC and TLs (same BPMs as for the SLS 2.0 storage ring)	dark period
Current Monitor (NPCT)	2	incl. NPCT vacuum chambers , comm. Bergoz NPCT transformer and electronics	dark period
Filling Pattern Monitor (FPM)	1	requires synchrotron radiation port from LGB without front end components	dark period
Time Structure / Streak Camera	1	upgrade / renewal of existing dual-sweep synchro-scan streak camera	dark period
Profile Monitor (SRPM) (π-polarization method)	2	requires SR-port from LGB with front end components and diagnostics hutch	dark period
"in-Air" Position (and Profile) Monitor (XBPM)	24	using hard X-ray radiation (> 10 keV) through bending magnet absorbers for position and possibly profile (local coupling) measurements (2 per sector)	to be designed
Screen Monitor (SCM)	2	beam profile meas. in storage ring injection straight for injection optimization	dark period
Long. Beam Loss Monitor (LBLM) (optical fiber along BTR line)	1	monitors and locates beam losses in the BTR and the storage ring injection area	SwissFEL ?
Beam Loss Monitors (BLM)	48	4 BLMs (scintillator rods and photo multipliers) per sector	SwissFEL ?
ID-Photon BPM (PBPM)	18	Diamond quad-PBPM for hard x-ray beam lines. Gas-based PBPMs for low energy beam lines (SwissFEL-type, R&D ongoing). DAQ integrated in FOFB.	to be developed
BTR Diagnostics Upgrade			
- Screen Monitor	3	SwissFEL-type of SCM for beam observation / matching	SwissFEL
- Synch. Radiation Monitor	3	new camera system and optics	SwissFEL
- Charge Monitor	1	Bergoz Turbo-ICT for improved S/N	dark period
Injector Diagnostics Upgrade	All	electronics and CS-upgrade of diagnostics systems	dark period

Some Stability-related Issues for SLS 2.0

<u>Alignment Specifications</u>

- \rightarrow absolute girder alignment: 60 μ m
- \rightarrow girder to girder alignment: 20 μ m
- \rightarrow elements on girder alignment: 30 μ m

Assumptions & Strategy

- → small girder-to-girder and elements on girder tolerances due to small maximum corrector strengths of \pm 400 µrad (for \pm 5 A PS)
- → PS noise ~ 5 ppm in amplitude (matching noise contribution to BPMs: 50 nm rms @ 1 kHz)
- → beam-based girder and BPM alignment to reduce corrector strengths
- → allow for deliberate beam steering and fast feed forwards (e.g. polarization bumps of up to 300 µrad max. @ 10 Hz for individual beam lines)
- → vertical source point stability: 100 nm (50 nrad) from days to 100 Hz for $\sigma/10$ of beam size in ID straights: sqrt (1 pmrad x 1.7 m) ≈ 1.3 µm
- \rightarrow source point reproducibility: run to run < 1 µm (500 nrad) / SDs < 10 µm (4 µrad)
- → emittance / betatron coupling stability to 1% (10 mrad) @ 100 Hz to be controlled by dedicated skew quads and to be monitored by (fast) beam size measurement

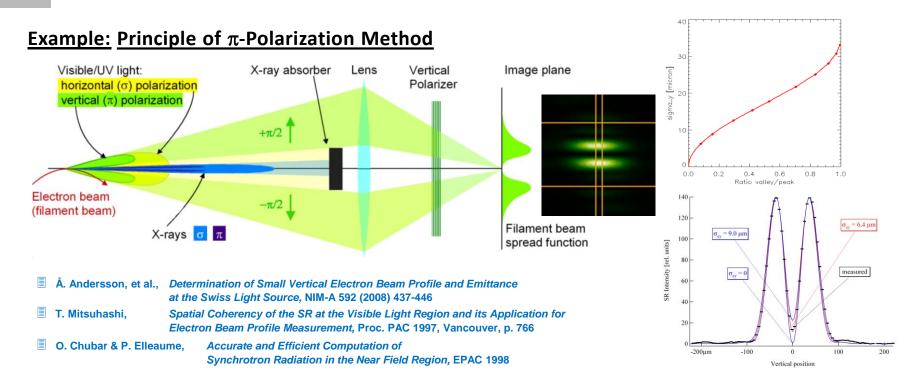
SLS 2.0 – Standard Diagnostics Systems

• Storage Ring Current, Transmission Efficiency and Lifetime

- → use of commercially available NPCT monitors and front end electronics
- → use of standardized PSI read-out and processing electronics (new HW platform)

Filling Pattern and Top-Up Control

- → use of visible SR from LGB measured with APD (e.g. AD230-8-TO52-S1 APD & trans-impedance amp.)
- \rightarrow use of fast (GS/s) ADC and filling pattern / top-up control via SLS 2.0 event system
- **Beam Loss Monitoring** (developed for SwissFEL but not yet implemented at SLS)
 - → long. loss monitor (organic scintillator fiber, BCF-12) in BTR and injection straight for determination of beam loss locations (< 0.5 m resolution) during injection
 - → localized loss monitors (e.g. Cerenkov or gamma-scintillators) in storage ring sectors for turn-by-turn beam loss detection
 - → SwissFEL BLM electronics (PSI-design) or LIBERA-BLM (commercial) for read-out


• Injection Diagnostics

- → screen (YAG:Ce) monitors in BTR and injection straight and SR monitors in BTR
- → re-use of SwissFEL screen monitor design and camera read-out system
- \rightarrow Turbo-ICT for higher resolution and improved S/N

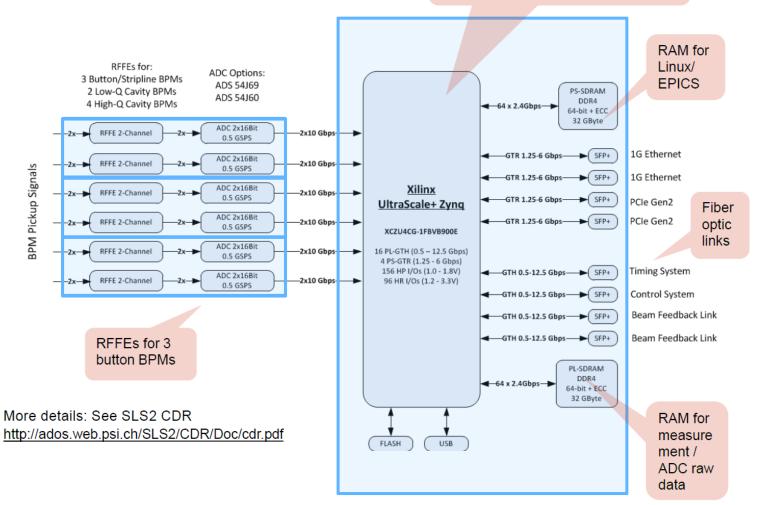
SLS 2.0 – Improved Diagnostics Systems

Synchrotron Light Monitor – Coupling and Emittance Determination

...application of π -polarization (vertical) and interferometric method (horizontal) by using visible / UV SR from LGB bending magnets allows the determination of the small SLS 2.0 beam sizes, which are in the order of 5 µm (σ_h and σ_v)

- re-use of components from SLS-1 X08DA and X09DA beam size monitors (cost savings)
- efficient out-coupling of light in (single?) beamline hutch (easy maintenance)

SLS 2.0 – Improved Diagnostics Systems

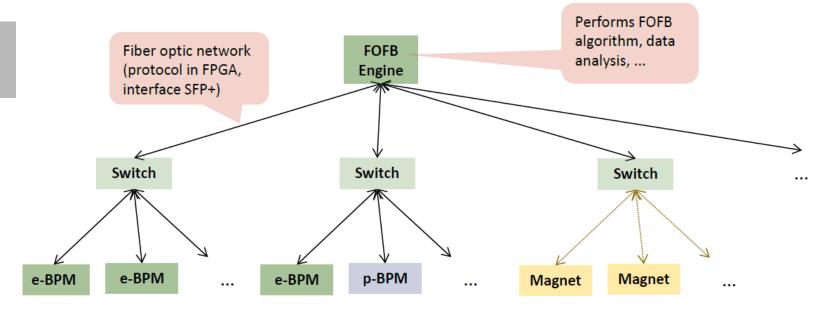

• Present SLS BPM and FOFB System (DBPM-1)

- → BPMs "end of lifetime" (failure rate still ok, but no spares, obsolete HW and FW)
- → non-scalable FOFB ring topology and obsolete DSP programming with assembler
- <u>Upgrade of SLS BPM / FOFB System</u> (SLS 2.0 BPM / FOFB System)
 - \rightarrow aiming for cost-effective and least complex and scalable solution
 - → Zynq UltraScale+ System on Chip
 - \rightarrow cost optimized housing (no VME) with single 12 V supply (optional redundancy)
 - → RFFE and ADC on the same PCB
 - → ADCs with multi-gigabit serial links (JESD204B)
 - → form factors are driven by application requirements (system is open for other possible PSI applications e.g. HIPA and SwissFEL BPMs)
 - → Optional: LINUX and EPICS running on BPM (may be added later)
 - \rightarrow direct timing system interface
- Status (PSI (AEK) Electronics Governance Board decision is still pending)
 - \rightarrow design has been started with goal of replacing present SLS system by 2021

SLS 2.0 – Improved Diagnostics Systems

DBPM-3 for SLS Upgrade and SLS 2.0

System-on-Chip (SoC): Takes over job of EPICS IOC, Event Receiver, Wiese DSP Board & "QDR" Digital Filter BPM Board.


DBPM-3 Specifications

<u>Parameter</u>	<u>Value</u>	<u>Beam Current /</u> <u>Filling Pattern</u>
Position Noise (1 kHz BW)	<u><50 nm RMS</u>	<u>nominal</u>
Position Noise (0.5 MHz BW)	<1000 nm RMS	nominal
	<50 um RMS	1mA single bunch
Position Drift (for constant	<u><100 nm / hour</u>	<u>nominal</u>
beam current and filling	<400 nm / week	nominal
pattern), electronics only	<1000 nm / year	nominal
Position Drift (mechanics only,	<100nm / hour	nominal
for top-up operation mode and	<400nm / week	nominal
standard tunnel temperature stability)	<1000 nm / year	nominal
Beam current dependence for constant filling pattern	<100nm / 1%	nominal

See SLS2 CDR http://ados.web.psi.ch/SLS2/CDR/Doc/cdr.pdf

Fast Orbit Feedback Topology

Data transfer from / to FOFB-engine through "tree topology"

- \rightarrow size and performance is scalable / extendable
- \rightarrow allows the mix of different monitors and actuators (e-BPM, p-BPM, magnet PS,...)
- → uses fiber optic links (50 Mbaud POF for magnet PS, else: multi-gigabit SFP)
- \rightarrow e-BPM, Switch and FOFB-engine can use the same FPGA board (Zynq U+ SoC)

Summary and Conclusions

- SLS 2.0 Upgrade Project has been proposed to funding agencies
 - \rightarrow positive recommendation on CDR
 - \rightarrow project planning and lattice refinement (for freezing system specs) is ongoing
- 7-BA and novel technologies allow emittance reduction by factor 40 -50
- SLS accelerator tunnel has to be modified and source points (beam lines) need to be moved
- "Dark Period" should be as short as possible (complicated logistics!)
- Critical feasibility issues (systems) are identified presently worked-out
- **Diagnostics specifications** are achievable with state-of-the-art systems
 - \rightarrow standard diagnostics available
 - \rightarrow stability criteria and stabilization strategy worked out
 - → BPM and FOFB systems in design (MBF possibly included)
 - \rightarrow beam profile monitoring should be feasible with π -polarization technique