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LHCtop WGLHC comb. (Sep 2013) 7 TeV  [6] 0.88)± 0.95 (0.35 ±173.29 
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the top is the heaviest known fundamental particle
◦ expected to play a special role in new physics models

extensive programs at ATLAS and CMS to measure its properties
theoretical predictions available at NNLO+NLL
we’ve entered the era of precision top physics
what can LHCb add to the picture?

top physics beyond ATLAS and CMS
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optimised to study beauty and charm hadrons
fully instrumented in the forward region

◦ 2 < η < 5
◦ ideal acceptance for bb̄ events

precise vertex detector
◦ separate primary and secondary vertices
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Figure 1 shows the luminosity leveling of LHCb dur-

ing a typical LHC fill in 2012. The average pile–up was

around µ ≃ 1.6 which corresponds to a luminosity of

4 × 1032 cm−2s−1.

Figure 1: Luminosity evolution for the 3 main LHC exper-

iments during a fill in LHC Run 1. The luminosity at the

LHCb experiment is leveled by offset.

β* Leveling

Another way for controlling the pile–up is to change the

beam size of the colliding beam through β*. This technique

does not affect the beam–beam parameter since the beams

remain head-on. Landau damping from HO collisions is

therefore preserved [7].

During a change of β* the optics of the entire interaction

region and long straight section is affected. The gradient

changes in the quadrupoles require adjustments of the cross-

ing angle shapes and lead to orbit changes due to feed-down

from the beam offsets in the quadrupoles (due to misalign-

ments). Leveling by β* requires therefore excellent control

of the beam orbit in the straight section and at the collision

point whenever the optics (β*) is changed to maintain the

luminosity. The beam separation d should ideally not exceed

0.5σ during the process: this corresponds to d = 10−50 µm

depending on beam and optics parameters. Furthermore

the interlocked collimators located close to the low-beta

quadrupoles must follow the optics changes smoothly.

β* LEVELING AT LHCB

One of the operation scenarios for Run 2 involving lumi-

nosity leveling is shown in Fig. 2. This scenario is based on

the implementation of β* leveling at the LHCb experiment

as a preparation to leveling in the high luminosity IRs in

case of high beam brightness.

Due a limitation of the maximum β∗ at injection in LHCb,

offset and β* leveling must be combined: in the first part of

a fill, the initial β∗ of 10 m is too small and offset leveling

must be used. Once the beams are head-on β* leveling takes

over.

Figure 2: Operation scenario of LHC for 2015 at 6.5 TeV. In

a first step the optics is squeezed (β* reduction) in IR1 and

IR5 with non-colliding beams. The beams are then brought

into collision. At that stage the experiments start data taking

(’Stable beams’). The luminosity if IR8 is first leveled by

offset before β* leveling takes over after some time.

The evolution of some parameters during LHCb leveling

is presented in Fig. 3. During the first few hours leveling by

offset is used until the beams are head-on (d = 0). Once the

beams are head-on, the luminosity is adjusted by step-wise

β* reduction. β* leveling requires ideally a continuous set

of well matched optics for every possible value of β*. In

practice the required number of points may be defined by

the maximum luminosity excursion that can be tolerated,
∆L
L
< ±0.05 ⇒

∆β∗

β∗
< 0.10. Each pre-defined β* point

is prepared and commissioned before it is used in regular

operation. The commissioning implies careful optics and

orbit corrections to maintain the beams head-on during each

step. The optics must be corrected such as to minimize

perturbation of β* in IR1 and IR5. A total of 20 optics

points are required to cover the β* range of 10 m to 3 m.

Initially it will only be possible to move from a larger to a

smaller β* value, not step back will be possible.

DESIGN OVERVIEW

Figure 4 shows in detail one β* leveling step. The main

phases are:

• A luminosity decay phase due to the intensity decrease

and emittance blow up.

• The preparation of the next the step (A) when all the

currents functions are loaded into the power converter

controllers. Position functions are loaded into the con-

trol of the collimators.

• The step execution (A 7→ B) when power converters

and collimator execute their pre-defined functions.

• The end of the step (at B) when the collimator position

thresholds are updated. At that point the luminosity is

re-optimized in case the orbit was not corrected per-

fectly leaving a non-zero residual offset d.

During the leveling step (A 7→ B) the beam orbit feed-

back system must ensure that the beams remain in collision.

Since the shape of the crossing angle bumps used to provide

Proceedings of IPAC2014, Dresden, Germany TUPRO022
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stable data-taking with luminosity levelling
average pile-up ∼ 2 (twice design)
1 and 2 fb−1 collected in Run 1 at 7 and 8 TeV

◦ ATLAS/CMS collected approximately 25 fb−1

LHCb is expecting ≥6 fb−1 at 13 TeV (∼ 4 fb−1 collected so far)

data-taking at LHCb
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LHCb explores from very low to very high pT

strange physics, e.g. K0
s → µµ

measurements of W and Z production and decay
◦ PDF constraints in a unique kinematic region

direct searches for new physics, e.g. Dark Photons, LLPs

LHCb - a general purpose detector in the forward region
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the unique environment and running conditions of LHCb brings advantages and disadvantages in the top sector

Advantages

unique forward rapidity coverage
low pile-up environment
excellent vertex resolution for jet tagging

Disadvantages

low acceptance
low luminosity compared to ATLAS/CMS
no Emiss

T for selection or full top reconstruction

LHCb as a top detector
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can study a number of tt̄ final states depending on the decay of the W bosons
◦ up to 2 leptons, up to 6 jets

each final state presents different statistics/backgrounds/purity

limited acceptance at LHCb makes a partial reconstruction attractive

reconstructing top physics channels
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LHCb-PUB-2013-009

expected number of tt̄ events in LHCb fiducial region by final state
◦ 2 < η(`, j) < 4.5
◦ pT(`, j) > 20 GeV

yi
el
d pu
rit
y

`b final state is most statistically accessible at LHCb in Run 1
◦ will contain largest background component
◦ does not differentiate between single top and top pair

a number of final states inaccessible in Run 1

reconstructing top quarks in the forward region
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t

t̄

top production at the LHC is dominated by gluon-gluon fusion
top quark production cross-sections provides significant constraints on the
gluon PDF at high-x

◦ both normalised differential top rapidity and inclusive cross-sections
contribute

complementary to those from inclusive jet data
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top physics as PDF constraints [JHEP (2017) 04:p. 044]
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x1p
x2p

forward top quark production provides reach to even higher x than
central region
reductions of greater than 20% on the gluon PDF possible for
measurement precision of 4%

◦ ATLAS/CMS precision in eµ channel ∼ 3.5%
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forward tops for PDF constraints [JHEP (2014) 02:p. 126]
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charge asymmetry exists in quark-initiated tt̄ events at NLO due to interference effects
forward-backward asymmetry, AFB measured wrt proton direction at the Tevatron
deviations seen in the past, largely alleviated by updated predictions
LHC offers new energy regime to probe the asymmetry

tt̄ charge asymmetry [Phys. Rev. Lett. (2015) 115:p. 052001]
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lower expected asymmetry at the LHC
◦ symmetric pp initial state
◦ production dominated by gluon fusion (∼ 80%)

measure forward-central asymmetry, AC

expected asymmetry of ∼ 1%
measurements consistent with the SM predictions, and with no
asymmetry
can access larger asymmetries in certain kinematic regions

◦ e.g. boosted regime
can also study energy or inclined asymmetry in tt̄+jet events [1307.
6225 [hep-ph]]

or... go forward
CA
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LHCb, by virtue of its forward acceptance, is in a unique position
to measure the charge asymmetry
higher rate of quark-initiated production gives less dilution
quark direction better aligned with tt̄ system due to valence quarks
can access asymmetry by measuring relative differences in rate of
top/anti-top production in the forward region

◦ tops identified through `±b final state
◦ rises to as high as 8% in the very forward region
◦ requires good control of backgrounds and their asymmetries

can also measure A``
c using dilepton final state

◦ only measure lepton asymmetry, no top reconstruction

LHCb has already made measurement of Abb̄
C [Phys. Rev. Lett. (2014)

113:p. 082003]
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tt̄ charge asymmetry at LHCb [Phys. Rev. (2015) D91:p. 054029]
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heavy flavour tagging



jet inputs prepared using particle flow algorithm
clustered using anti−kT algorithm with R=0.5
jet energy resolution ∼ 10 − 15%
performed measurements of W and Z production in association with jets
at 7 and 8 TeV
also searches for long-lived particles decaying to jets, J/ψ production in
jets, etc..
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jet reconstruction at LHCb [JHEP (2014) 01:p. 033]

[JHEP (2016) 05:p. 131]

[Phys. Rev. Lett. (2017) 118:p. 192001]
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developed inclusive b and c-jet tagger at LHCb
exploit tracking and vertexing capabilities of detector
procedure:

◦ reconstruct 2-body vertices from displaced tracks in event
◦ merge into n-body vertices (SV) by linking vertices with shared tracks
◦ number of kinematic and quality requirements on track and vertices

jet is SV-tagged if it event contains an SV within ∆R < 0.5 of the jet axis
SV

jet

jets and heavy flavour tagging [JINST (2015) 10:P06013]
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two separate BDTs trained to separate light from heavy flavour jets, and b from c jets, using
◦ SV displacement from PV
◦ SV kinematics
◦ SV charge and multiplicity
◦ corrected mass of SV
◦ jet properties

Mcor =
√
M2 + p2 sin2 θ + p sin θ
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heavy flavour tagging efficiency [JINST (2015) 10:P06013]
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tagging efficiencies validated in data using number of control samples
◦ B+jet, D+jet, displaced µ+ jet, prompt and isolated µ+jet

flavour composition of samples determined before (“total”) and after
tagging (“pass”) using fits

◦ all jets, and subsample containing muons
“total” determined by fits to impact parameter of highest pT track in jet
“pass” determined by fits to two-dimensional BDT outputs

◦ systematic determined by performing fits to Mcor and SV multiplicity

heavy favour tagging validation [JINST (2015) 10:P06013]
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b and c jet tagging efficiencies accurate in simulation
to 10% (above pT of 20 GeV)
mistag rate also determined using sample with “back-
ward” or “too-long-lived” secondary vertices

◦ consistent between data and simulation at the level
of 30%

heavy flavour tagging validation [JINST (2015) 10:P06013]
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Run 1 measurements



reconstruct top through the presence of a high pT muon and a b-jet
3 fb−1 of data collected at 7 and 8 TeV
first step is to measure W + (b, c, l) cross-sections

selection

single high pT muon, pT > 20 GeV, 2.0 < η < 4.5

high pT jet, pT > 20 GeV, 2.2< η<4.2

∆R(µ, j) > 0.5

require pT(jµ + j) >20 GeV
◦ jµ - reconstructed jet containing muon
◦ proxy for missing energy in the system

jµ also allows for construction of isolation variable, pT(µ)
pT(jµ)

top production in the µb final state [Phys. Rev. Lett. (2015) 115:p. 112001]
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pT(µ)/pT(jµ) > 0.9

jets SV tagged and b- and c-jet content extracted from fits to 2D BDT distributions in each bin of pT(µ)/pT(jµ)

purity determined using fit to muon isolation spectrum

measurements performed of
◦ ratios (W±j/Zj, W (b, c)/Wj)
◦ asymmetries (Wb, Wc)

W + (b, c, l) [Phys. Rev. (2015) D92:p. 052001]
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good level of data/theory agreement observed
experimental measurements dominated by statistical uncertainties
measured Wc asymmetries ≈ 2σ smaller than SM expectations

W + (b, c, l) results [Phys. Rev. (2015) D92:p. 052001]
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tightened fiducial region to measure top contribution
◦ reduce di-jet background by requiring larger muon pT threshold (25 GeV)
◦ reduce Wb by requiring large jet pT (50 GeV)

top production in the µb channel [Phys. Rev. Lett. (2015) 115:p. 112001]
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top cross-section requires subtraction of Wb contribution

determined by first measuring
Wj in data and using Wb/Wj from simulation

method validated using Wc which does not
contain additional contributions (e.g. top)

µb - background subtraction [Phys. Rev. Lett. (2015) 115:p. 112001]
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profile likelihood used to compare Wb hypothesis with Wb+ top

both differential yield and charge asymmetry as a function of pT(µ+ b) used
◦ combined 7 and 8 TeV datasets

uncertainties treated as Gaussian nuisance parameters
5.4σ significance observed
CDF, D0, ATLAS, CMS and now LHCb have observed top production

µb - significance [Phys. Rev. Lett. (2015) 115:p. 112001]
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 = 7 TeV LHCb datas  = 8 TeV LHCb datas combined single-top and tt̄ cross-sections determined
by subtracting W + b background from data
corrected for efficiencies determined from both data and
simulation
tt̄ accounts for ≈ 3/4 of top production
total signal yield of 220 ± 39
cross-sections in agreement with predictions (MCFM
NLO, CT10)
dominant uncertainty due to tagging efficiency (10%)
uncertainties of 5-10% from purity determinations

µb - cross-section [Phys. Rev. Lett. (2015) 115:p. 112001]
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`bb̄ final state offers more suppression of backgrounds (e.g. QCD)
◦ can also use final state electrons

simultaneous measurement of W + bb, W + cc and tt̄ production at LHCb in both µbb and ebb final states
◦ 2.0 fb−1 at 8 TeV

selection

pT (`) > 20 GeV, 2.0 < ηµ(ηe) < 4.5(4.25)
◦ isolated

12.5 < pT (j) < 100 GeV, 2.2 < η(j) < 4.2
◦ SV-tagged, BDT(bc|udsg)> 0.2

∆R(`, j) > 0.5
pT (`+ j1 + j2) > 15 GeV

top production in the `bb̄ channel [Phys. Lett. (2017) B767:pp. 110–120]
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uGB - BDT trained to separate W + bb and tt̄
uniform boosting technique [JINST (2015) 10:T03002]
used to reduce correlation with mass
trained using number of kinematic and topological vari-
ables

◦ pT , η, jet mass
◦ ∆R separation between jets
◦ lepton scattering angle in dijet rest frame

`bb - uGB [Phys. Lett. (2017) B767:pp. 110–120]
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4-dimensional fit to extract signal yields
◦ di-jet invariant mass
◦ BDT(b|c) for both jets - separation between b and
c-jets

◦ uGB
samples split by lepton charge and flavour
backgrounds determined from mixture of data and sim-
ulation

`bb - fits [Phys. Lett. (2017) B767:pp. 110–120]
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tt signal observed with significance of 4.9σ
measurement precision ∼ 40%

◦ similar contributions from statistical and systematic
sources

many systematics will reduce with higher statistics
◦ purity extraction, tagging efficiency, jet energy scale

also used to place limits on Higgs production [LHCb-
CONF-2016-006]

◦ H → cc̄ at LHCb with the HL-LHC? see here

`bb̄ - results [Phys. Lett. (2017) B767:pp. 110–120]
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centre-of-mass energy increased from 8 TeV to 13 TeV
◦ factor of ∼ 3 increase in inclusive tt̄ cross-section
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factor of ten increase in the tt̄ cross-section at LHCb(!)
◦ higher signal-to-background ratio
◦ can explore final states inaccessible in Run 1

collected 3.8 fb−1 of data in Run 2 so far
◦ expect another ∼ 2 fb−1 of data this year  [TeV]s
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LHCb-PAPER-2017-050
In Preparation

top production in the dilepton channel offers the highest purity final state
◦ extra lepton suppresses W + bb̄ and QCD backgrounds
◦ different-flavour leptons suppress Z + bb̄

out of statistical reach in Run 1, possible with boost in stats coming from increase in
√
s

analysis based on data collected in 2015 and 2016 ∼ 2 fb−1

selection

muon and electron, pT > 20 GeV, 2.0 < η < 4.5
◦ isolated, prompt

SV-tagged jet
◦ no bdt requirements, high purity final state

∆R(`, j) > 0.5, ∆R(µ, e) > 0.1

a total of 44 candidates selected

top production in the µeb channel

S. Farry | University of Liverpool 38/48



LHCb-PAPER-2017-050
In Preparation

N(Z+jet) = 0.32 ± 0.03

leptons produced through Z → ττ or misidentification of muon or electron
jet through genuine b-jet or misidentified charm or light jet
determined by normalising to fully reconstructed Z → µµ+SV-tagged jet

N(W t) = 1.8 ± 0.5

top production in association with W produces identical final state
determined using Powheg and scaled by efficiencies

N(QCD) = 3.9 ± 1.9

multi-jet events producing two leptons and an associated jet
determined by extrapolating from same-sign control region

N(W W, W Z, ZZ) ∼ 0

µeb - backgrounds

S. Farry | University of Liverpool 39/48



LHCb-PAPER-2017-050
In Preparation
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shapes taken from data (QCD) and simulation (Zj, Wt,
tt̄)
tt̄ shape normalised to (data - background)
purity of ∼ 87%
good agreement in kinematic variables (muon, electron,
jet pT , η)

µeb - invariant mass
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LHCb-PAPER-2017-050
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µeb - lepton kinematics
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LHCb-PAPER-2017-050
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µeb - jet kinematics
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LHCb-PAPER-2017-050
In Preparation

cross-section calculated according to standard formula

measured in fiducial region defined by kinematic requirements on muon, electron and jet

σtt =
N −Nbkg

L · ε
·Fres,

luminosity, L = 1.93 ± 0.07 pb

efficiencies calculated using simulation validated using data-driven methods

resolution efficiency Fres accounts for migrations in to and out of the fiducial region

σtt̄ = 126 ± 19 (stat) ± 16 (syst) ± 5 (lumi) fb

µeb - cross-section

S. Farry | University of Liverpool 43/48



overall precision of ∼ 20%, statistically limited
systematic uncertainty dominated by uncertainty on jet tagging

◦ will improve with increased datasets and further studies
uncertainty on background dominated by QCD uncertainty

◦ data-driven approach will improve with more statistics
selection efficiency dominated by uncertainty on isolation requirements

Table 2: Summary of the systematic uncertainties on the measurement of the tt̄ cross-section,
expressed as a percentage of the measured cross-section.

Source %
trigger 2.0
muon tracking 1.1
electron tracking 2.8
muon id 0.8
electron id 1.3
jet reconstruction 1.6
jet tagging 10.0
selection 4.0
background 5.1
acceptance 0.5
total 12.7

measurement are uncorrelated with measurements in other final states, future reductions292

of the uncertainty on the b-tagging efficiency, common to all final states, will be required293

in order to fully exploit the complementarity. With the larger dataset available in the294

LHCb upgrade, measurements in the µeb final state will no longer be statistically limited295

and have the potential to achieve the highest precision on the measurement of the tt296

production cross-section at LHCb.297
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measurements compared to predictions in measurement fidu-
cial region (top)
extrapolated to top quark level (below)

◦ 2.0 < yt < 5.0, pt
T > 10 GeV

results compared to POWHEG and aMCatNLO
◦ interfaced with Pythia for the parton shower
◦ decays performed with Madspin for aMCatNLO

differences in theory predictions largely due to scale choices
compatible with SM predictions
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data
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µeb results
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conclusion



last low-statistics tt̄ cross-section measurement at LHCb
expecting ≥ 6 fb−1 of data by end of Run 2

◦ measurements in other final states in progress
attention turning to systematic uncertainties

◦ work ongoing to improve uncertainty on tagging
efficiency

> 50 fb−1 with LHCb upgrade (Runs 3+4)
◦ percent-level statistical uncertainties

> 300 fb−1 at the HL-LHC? (Run 5)
◦ [CERN-LHCC-2017-003]

LHCb can soon join the precision top physics era
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outlook
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presented first measurement of top production at LHCb in Run 2

LHCb moving from the era of “top observation” to “precision measurements of top production”

measurements of the tt̄ asymmetry to come

tt
LHCb can make important contributions to the LHC physics program!

conclusion
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[JINST (2014) 9:P12005]

• VELO re-introduction

• Closing

• Beam monitoring

• Vertex resolution

• Luminosity measurement

Distribution of vertices overlaid on detector display. z-axis is scaled by 
1:100 compared to transverse dimensions to see the beam angle.

Beam 1 - Beam 2, Beam 1 - Gas, Beam 2 - Gas.

2

Outline

luminosity measured at LHCb using two methods: Van der Meer Scan (VDM)
and Beam-Gas Imaging (BGI)
beams scanned across each order in VDM to trace beam profile
in BGI method neon injected in beam-pipe to reconstruct beams using collision
vertices
both methods combined to determine luminosity

updated luminosity measurement uses improved two-dimensional description of beam density profile
BGI and VDM methods combined to achieve precision of 1.7% in 2011 and 1.2% in 2012
“the most precise luminosity measurement achieved so far at a bunched-beam hadron collider”

precision luminosity at LHCb
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(a) (b)

(c) (d)

(e)

FIG. 3. Cut diagrams.

tt̄ asymmetry - cut diagrams
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CDF Note 11206AFB summary - Tevatron
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a number of control samples used to validate heavy flavour tagging performance

1.B + jet fully reconstructed b-hadron plus jet, enriched in b-jets
2.D + jet fully reconstructed c-hadron plus jet, enriched in b and c jets
3.µ + jet displaced muon + jet, enriched in b and c jets
4.W + jet isolated prompt muon, enriched in light jet content

study all jets in control samples, and subsamples where jets contain muons
◦ presence of muon in jet enriches (b, c) content further, but only probes a subsample

b and c tagging efficiencies determined by performing simultaneous fits to samples 1-3 before and after tagging
requirements applied

◦ “total” - fit to impact parameter of track with highest pT in jet
◦ “pass” - fit to two-dimensional BDT templates

sample 4 used to study light jet mis-tag rate, and for data-driven templates

heavy flavour tagging validation [JINST (2015) 10:P06013]
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heavy flavour tagging validation [JINST (2015) 10:P06013]
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