Forward Top Physics at LHCb

Stephen Farry

on behalf of the LHCb collaboration

CERN Seminar Tuesday, 27th February 2018

UNIVERSITY OF LIVERPOOL

outline

1 introduction

- 2 heavy flavour tagging
- 3 Run 1 measurements
- 4 Run 2 measurements^{NEW}
- 5 conclusion

introduction

top physics beyond ATLAS and CMS

- the top is the heaviest known fundamental particle
 - o expected to play a special role in new physics models
- extensive programs at ATLAS and CMS to measure its properties
- theoretical predictions available at NNLO+NLL
- we've entered the era of precision top physics
- what can LHCb add to the picture?

LHCb

LHCb - running conditions

- optimised to study beauty and charm hadrons
- fully instrumented in the forward region
 - $\circ \ 2 < \eta < 5$
 - $\circ~$ ideal acceptance for $b\bar{b}$ events
- precise vertex detector
 - separate primary and secondary vertices

data-taking at LHCb

- stable data-taking with luminosity levelling
- average pile-up \sim 2 (twice design)
- 1 and 2 fb $^{-1}$ collected in Run 1 at 7 and 8 TeV
 - ATLAS/CMS collected approximately 25 fb⁻¹
- LHCb is expecting \geq 6 fb $^{-1}$ at 13 TeV (\sim 4 fb $^{-1}$ collected so far)

LHCb Integrated Recorded Luminosity in pp, 2010-2017

LHCb - a general purpose detector in the forward region

80

100

120

140

160 m_{μμ} [GeV]

- strange physics, e.g. $K_s^0 \rightarrow \mu\mu$
- measurements of W and Z production and decay
 - PDF constraints in a unique kinematic region
- direct searches for new physics, e.g. Dark Photons, LLPs

LHCb as a top detector

• the unique environment and running conditions of LHCb brings advantages and disadvantages in the top sector

Advantages	
unique forward rapidity coverage	
Iow pile-up environment	
excellent vertex resolution for jet tagging	

Disadvantages

- Iow acceptance
- Iow luminosity compared to ATLAS/CMS
- ${\mbox{ }}$ no $E_{\rm T}^{\rm miss}$ for selection or full top reconstruction

reconstructing top physics channels

- ${\mbox{ \ \ e}}$ can study a number of $t\bar{t}$ final states depending on the decay of the W bosons
 - up to 2 leptons, up to 6 jets
- each final state presents different statistics/backgrounds/purity
- Iimited acceptance at LHCb makes a partial reconstruction attractive

reconstructing top quarks in the forward region

 $\hfill \ensuremath{\,^\circ}$ expected number of $t\bar{t}$ events in LHCb fiducial region by final state

```
• 2 < \eta(\ell, j) < 4.5
```

```
\circ \ p_{\rm T}(\ell,j) > 20 \ {\rm GeV}
```


- ${\mbox{ }} \ \ell b$ final state is most statistically accessible at LHCb in Run 1
 - o will contain largest background component
 - o does not differentiate between single top and top pair
- a number of final states inaccessible in Run 1

[JHEP (2017) 04:p. 044]

top physics as PDF constraints

NNLO, global fits, LHC 13 TeV

- top production at the LHC is dominated by gluon-gluon fusion
- top quark production cross-sections provides significant constraints on the gluon PDF at high-x
 - $\circ\,$ both normalised differential top rapidity and inclusive cross-sections contribute
- complementary to those from inclusive jet data

forward tops for PDF constraints

- forward top quark production provides reach to even higher *x* than central region
- reductions of greater than 20% on the gluon PDF possible for measurement precision of 4%
 - $\circ~{\rm ATLAS/CMS}$ precision in $e\mu$ channel $\sim 3.5\%$

- charge asymmetry exists in **quark-initiated** $t\bar{t}$ events at NLO due to interference effects
- ${\sc {\tt I}}$ forward-backward asymmetry, $A_{\rm FB}$ measured wrt proton direction at the Tevatron
- deviations seen in the past, largely alleviated by updated predictions
- LHC offers new energy regime to probe the asymmetry

$t\bar{t}$ charge asymmetry at the LHC

- Iower expected asymmetry at the LHC
 - $\circ~$ symmetric pp initial state
 - $\circ\,$ production dominated by gluon fusion ($\sim 80\%)$
- measure forward-central asymmetry, A_C
- ${\ensuremath{\,^\circ}}$ expected asymmetry of $\sim 1\%$
- measurements consistent with the SM predictions, and with no asymmetry
- can access larger asymmetries in certain kinematic regions
 - o e.g. boosted regime
- $\mbox{ can also study energy or inclined asymmetry in <math display="inline">t\bar{t}+{\rm jet}$ events [1307 6225 [hep-ph]]
- or... go forward

$t\bar{t}$ charge asymmetry at LHCb

- LHCb, by virtue of its forward acceptance, is in a unique position to measure the charge asymmetry
- higher rate of quark-initiated production gives less dilution
- quark direction better aligned with $t\bar{t}$ system due to valence quarks
- can access asymmetry by measuring relative differences in rate of top/anti-top production in the forward region
 - $\circ\,$ tops identified through $\ell^\pm b$ final state
 - $\circ\,$ rises to as high as 8% in the very forward region
 - o requires good control of backgrounds and their asymmetries
- ${\mbox{ \ \ e}}$ can also measure $A_c^{\ell\ell}$ using dilepton final state
 - o only measure lepton asymmetry, no top reconstruction
- LHCb has already made measurement of $A_C^{b\bar{b}}$ [Phys. Rev. Lett. (2014) 113:p. 082003]

heavy flavour tagging

jet reconstruction at LHCb

- jet inputs prepared using particle flow algorithm
- $\hfill \$ clustered using ${\rm anti-}k_{\rm T}$ algorithm with R=0.5
- ${\mbox{ }}$ jet energy resolution $\sim 10-15\%$
- ${\sc \ }$ performed measurements of W and Z production in association with jets at 7 and 8 TeV
- $\mbox{ also searches for long-lived particles decaying to jets, <math display="inline">J/\psi$ production in jets, etc..

[JHEP (2014) 01:p. 033]

[JHEP (2016) 05:p. 131]

[Phys. Rev. Lett. (2017) 118:p. 192001]

- developed inclusive b and c-jet tagger at LHCb
- exploit tracking and vertexing capabilities of detector
- procedure:
 - o reconstruct 2-body vertices from displaced tracks in event
 - \circ merge into *n*-body vertices (SV) by linking vertices with shared tracks
 - $\circ\,$ number of kinematic and quality requirements on track and vertices
- \blacksquare jet is SV-tagged if it event contains an SV within $\Delta R < 0.5$ of the jet axis

bdts

- two separate BDTs trained to separate light from heavy flavour jets, and b from c jets, using
 - SV displacement from PV
 - SV kinematics
 - SV charge and multiplicity

$$M_{\rm cor} = \sqrt{M^2 + p^2 \sin^2 \theta} + p \sin \theta$$

- $\circ~$ corrected mass of SV
- jet properties

heavy flavour tagging efficiency

 \blacksquare light-jet mistag rate <1% for b-tag efficiency of 65% and c-tag efficiency of 25%

heavy favour tagging validation

- tagging efficiencies validated in data using number of control samples • B+jet, D+jet, displaced μ + jet, prompt and isolated μ +jet
- flavour composition of samples determined before ("total") and after tagging ("pass") using fits
 - o all jets, and subsample containing muons
- \hfill "total" determined by fits to impact parameter of highest p_T track in jet
- "pass" determined by fits to two-dimensional BDT outputs
 systematic determined by performing fits to M_{cor} and SV multiplicity

heavy flavour tagging validation

- b and c jet tagging efficiencies accurate in simulation to 10% (above p_T of 20 GeV)
- mistag rate also determined using sample with "backward" or "too-long-lived" secondary vertices
 - $\circ\,$ consistent between data and simulation at the level of 30%

Run 1 measurements

top production in the μb final state

- $\hfill reconstruct$ top through the presence of a high p_T muon and a $b\mbox{-jet}$
- $3 \, \text{fb}^{-1}$ of data collected at 7 and 8 TeV
- first step is to measure W + (b, c, l) cross-sections

selection

- \blacksquare single high p_T muon, $p_T>20\,{\rm GeV},\,2.0<\eta<4.5$
- \blacksquare high p_T jet, $p_{\rm T}>20$ GeV, 2.2< $\eta{<}4.2$

```
• \Delta R(\mu, j) > 0.5
```

- require $p_{\mathrm{T}}(j_{\mu}+j)>$ 20 GeV
 - $\circ~j_{\mu}$ reconstructed jet containing muon
 - proxy for missing energy in the system
- j_{μ} also allows for construction of isolation variable, $\frac{p_{\rm T}(\mu)}{p_{\rm T}(j_{\mu})}$

• jets SV tagged and b- and c-jet content extracted from fits to 2D BDT distributions in each bin of $p_{\rm T}(\mu)/p_{\rm T}(j_{\mu})$

- purity determined using fit to muon isolation spectrum
- measurements performed of
 - $\circ~$ ratios ($W^{\pm}j/Zj$, W(b,c)/Wj)
 - asymmetries (Wb, Wc)

W + (b, c, l) results

- good level of data/theory agreement observed
- experimental measurements dominated by statistical uncertainties
- ${\mbox{-}}$ measured Wc asymmetries $\approx 2\sigma$ smaller than SM expectations

top production in the μb channel

- tightened fiducial region to measure top contribution
 - $\circ\,$ reduce di-jet background by requiring larger muon $p_{\rm T}$ threshold (25 GeV)
 - $\circ~$ reduce Wb by requiring large jet $p_{\rm T}$ (50 GeV)

[Phys. Rev. Lett. (2015) 115:p. 112001]

μb - significance

- profile likelihood used to compare Wb hypothesis with Wb + top
- ${\mbox{ }}{\mbox{ }}$ both differential yield and charge asymmetry as a function of $p_{\rm T}(\mu+b)$ used
 - combined 7 and 8 TeV datasets
- uncertainties treated as Gaussian nuisance parameters
- 5.4 σ significance observed
- CDF, D0, ATLAS, CMS and now LHCb have observed top production

- combined single-top and $t\bar{t}$ cross-sections determined by subtracting W+b background from data
- corrected for efficiencies determined from both data and simulation
- $t\bar{t}$ accounts for $\approx 3/4$ of top production
- total signal yield of 220 ± 39
- cross-sections in agreement with predictions (MCFM NLO, CT10)
- dominant uncertainty due to tagging efficiency (10%)
- uncertainties of 5-10% from purity determinations

top production in the $\ell b \bar b$ channel

- $\ell b \bar b$ final state offers more suppression of backgrounds (e.g. QCD)
 - o can also use final state electrons
- = simultaneous measurement of $W + b\bar{b}$, $W + c\bar{c}$ and $t\bar{t}$ production at LHCb in both $\mu b\bar{b}$ and $eb\bar{b}$ final states

 $\circ~2.0~fb^{-1}$ at $8\,{\rm TeV}$

selection

• $p_T(\ell) > 20 \text{ GeV}, \ 2.0 < \eta^{\mu}(\eta^e) < 4.5(4.25)$

isolated

- $12.5 < p_T(j) < 100 \text{ GeV}, 2.2 < \eta(j) < 4.2$
 - SV-tagged, BDT(bc|udsg)> 0.2
- $\Delta R(\ell, j) > 0.5$

•
$$p_T(\ell + j_1 + j_2) > 15 \,\mathrm{GeV}$$

 $\ell b \overline{b}$ - uGB

- uGB BDT trained to separate $W + b\overline{b}$ and $t\overline{t}$
- uniform boosting technique [JINST (2015) 10:T03002] used to reduce correlation with mass
- trained using number of kinematic and topological variables
 - p_T , η , jet mass
 - $\circ~\Delta R$ separation between jets
 - o lepton scattering angle in dijet rest frame

 $\ell b \overline{b}$ - fits

[Phys. Lett. (2017) B767:pp. 110-120]

Background

- 4-dimensional fit to extract signal yields
 - di-jet invariant mass
 - \circ BDT(b|c) for both jets separation between b and *c*-jets
 - o uGB
- samples split by lepton charge and flavour
- backgrounds determined from mixture of data and simulation

 $\ell b ar b$ - results

- $t \bar{t}$ signal observed with significance of 4.9 σ
- ${\mbox{-}}$ measurement precision $\sim 40\%$
 - similar contributions from statistical and systematic sources
- many systematics will reduce with higher statistics
 purity extraction, tagging efficiency, jet energy scale
- also used to place limits on Higgs production [LHCb-CONF-2016-006]
 - $\circ~H \rightarrow c \bar{c}$ at LHCb with the HL-LHC? see here

Run 2 measurements

top production at $\sqrt{s} = 13$

- centre-of-mass energy increased from 8 TeV to 13 TeV a

	$d\sigma$ (fb)	7	TeV	,	8	TeV		14	Tev	/	sectio
	lb	285	±	52	504	±	94	4366	±	663	s
	lbj	97	\pm	21	198	\pm	35	2335	\pm	323	os
5 <u>9</u>	lbb	32	\pm	6	65	\pm	12	870	\pm	116	cī
U T	lbbj	10	\pm	2	26	±	4	487	\pm	76	Ę
i S V	$l^{+}l^{-}$	44	\pm	9	79	\pm	15	635	\pm	109	e
	l^+l^-b	19	\pm	4	39	\pm	8	417	±	79	ISI,
• factor of ten increase in the $t\bar{t}$ cross-section at LHCb(!)											

- - higher signal-to-background ratio
 - can explore final states inaccessible in Run 1
- collected 3.8 fb⁻¹ of data in Run 2 so far
 - \circ expect another $\sim 2 \, \mathrm{fb}^{-1}$ of data this year

top production in the μeb channel

- top production in the dilepton channel offers the highest purity final state
 - $\circ~$ extra lepton suppresses $W+b\bar{b}$ and QCD backgrounds
 - \circ different-flavour leptons suppress $Z + b \bar{b}$
- \blacksquare out of statistical reach in Run 1, possible with boost in stats coming from increase in \sqrt{s}
- ${}^{\bullet}$ analysis based on data collected in 2015 and 2016 $\sim 2\,{\rm fb}^{-1}$

selection

- \blacksquare muon and electron, $p_T > 20\,{\rm GeV},\, 2.0 < \eta < 4.5$
 - o isolated, prompt
- SV-tagged jet
 - o no bdt requirements, high purity final state
- $\Delta R(\ell, j) > 0.5$, $\Delta R(\mu, e) > 0.1$

a total of 44 candidates selected

μeb - backgrounds

In Preparation

$N(Z+jet) = 0.32 \pm 0.03$

- \blacksquare leptons produced through $Z \to \tau \tau$ or misidentification of muon or electron
- jet through genuine b-jet or misidentified charm or light jet
- ${\sc {\tt a}}$ determined by normalising to fully reconstructed $Z \to \mu \mu + {\rm SV}{\sc {\tt tagged}}$ jet

$N(Wt) = 1.8 \pm 0.5$

- $\hfill \,$ top production in association with W produces identical final state
- determined using Powheg and scaled by efficiencies

$N(QCD) = 3.9 \pm 1.9$

- multi-jet events producing two leptons and an associated jet
- determined by extrapolating from same-sign control region

$N(WW, WZ, ZZ) \sim 0$

μeb - invariant mass

LHCb-PAPER-2017-050 In Preparation

- shapes taken from data (QCD) and simulation (Zj, Wt, $t\bar{t}$)
- $t\bar{t}$ shape normalised to (data background)
- ${\hfill \ }$ purity of $\sim 87\%$
- ${\rm ~ }$ good agreement in kinematic variables (muon, electron, jet $p_T,~\eta)$

LHCb-PAPER-2017-050

In Preparation

- cross-section calculated according to standard formula
- measured in fiducial region defined by kinematic requirements on muon, electron and jet

$$\sigma_{t\overline{t}} = \frac{N - N_{\rm bkg}}{\mathcal{L} \cdot \varepsilon} \cdot \mathcal{F}_{\rm res},$$

- luminosity, $\mathcal{L} = 1.93 \pm 0.07$ pb
- efficiencies calculated using simulation validated using data-driven methods
- \blacksquare resolution efficiency $\mathcal{F}_{\mathrm{res}}$ accounts for migrations in to and out of the fiducial region

 $\sigma_{t\bar{t}} = 126 \pm 19 \,(\text{stat}) \pm 16 \,(\text{syst}) \pm 5 \,(\text{lumi}) \,\text{fb}$

	Source	%
	trigger	2.0
• overall precision of $\sim 20\%$, statistically limited	muon tracking	1.1
- · · · · · · · · · · · · · · · · · · ·	electron tracking	2.8
systematic uncertainty dominated by uncertainty on jet tagging	muon id	0.8
 will improve with increased datasets and further studies 	electron id	1.3
uncertainty on background dominated by QCD uncertainty	jet reconstruction	1.6
 data-driven approach will improve with more statistics 	jet tagging	10.0
selection efficiency dominated by uncertainty on isolation requirements	selection	4.0
	background	5.1
	acceptance	0.5
	total	12.7

μeb results

- measurements compared to predictions in measurement fiducial region (top)
- extrapolated to top quark level (below)
 2.0 < y^t < 5.0, p^t_T > 10 GeV
- results compared to POWHEG and aMCatNLO
 - interfaced with Pythia for the parton shower
 - o decays performed with Madspin for aMCatNLO
- differences in theory predictions largely due to scale choices
- compatible with SM predictions

conclusion

outlook

- $\hfill \ensuremath{\,^\circ}$ last low-statistics $t\bar{t}$ cross-section measurement at LHCb
- expecting $\geq 6 \, \mathrm{fb}^{-1}$ of data by end of Run 2
 - o measurements in other final states in progress
- attention turning to systematic uncertainties
 - work ongoing to improve uncertainty on tagging efficiency
- > 50 fb⁻¹ with LHCb upgrade (Runs 3+4)
 percent-level statistical uncertainties
- $\blacksquare > 300\,{\rm fb^{-1}}$ at the HL-LHC? (Run 5)
 - [CERN-LHCC-2017-003]
- LHCb can soon join the precision top physics era

LHC roadmap: accor LS2 starting in 2019 LS3 LHC: starting in 2024 Injectors: in 2025	ding to M => 24 mo => 30 mo => 13 mo	TP 2016- nths + 3 m nths + 3 m nths + 3 m	2020 V1 onths BC onths BC onths BC	Phys Shut Bear Tech	ilos idown m commissioning inical stop
2015 2016 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4	2017 Q1 Q2 Q3 Q4	2018 Q1 Q2 Q3 Q4	2019 Q1 Q2 Q3 Q4	2020 Q1 Q2 Q3 Q4	2021 Q1 Q2 Q3 Q4
LHC Injectors Run 2			LS 2		
•	PH	ASE 1			
2022 2023 QI Q2 Q3 Q4 QI Q2 Q3 Q4	2024 Q1 Q2 Q3 Q4	2025 Q1 Q2 Q3 Q4	2026 Q1 Q2 Q3 Q4	2027 Q1 Q2 Q3 Q4	2028 Q1 Q2 Q3 Q4
LHC Injectors		LS 3		Run 4	
• • • • • • • • • • • • • • • • • • • •				PHASE 2 -	
2029 2030 01 02 03 04 01 02 03 04	2031 Q1 Q2 Q3 Q4	2032 Q1 Q2 Q3 Q4	2033 Q1 Q2 Q3 Q4	2034 Q1 Q2 Q3 Q4	2035 Q1 Q2 Q3 Q4
LHC Injectors		Run 5		LS 5	

conclusion

- presented first measurement of top production at LHCb in Run 2
- LHCb moving from the era of "top observation" to "precision measurements of top production"
- measurements of the $t\bar{t}$ asymmetry to come

LHCb can make important contributions to the LHC physics program!

backup

precision luminosity at LHCb

- Iuminosity measured at LHCb using two methods: Van der Meer Scan (VDM) and Beam-Gas Imaging (BGI)
- beams scanned across each order in VDM to trace beam profile
- in BGI method neon injected in beam-pipe to reconstruct beams using collision vertices
- both methods combined to determine luminosity

- updated luminosity measurement uses improved two-dimensional description of beam density profile
- \blacksquare BGI and VDM methods combined to achieve precision of 1.7% in 2011 and 1.2% in 2012
- " "the most precise luminosity measurement achieved so far at a bunched-beam hadron collider"

Beam I - Beam 2, Beam I - Gas, Beam 2 - Gas,

 $t\bar{t}$ asymmetry - cut diagrams

FIG. 3. Cut diagrams.

$t\bar{t}$ production at LHCb

 (x,Q^2) coverage at LHCb

A_{FB} summary - Tevatron

Tevatron tt Asymmetry	Preliminary		
tt ∆y Asymmetry (A ^{tt} _{cp})			
CDF Lepton+jets (9.4 fb ⁻¹) PRD 87, 092002 (2013) CDF Dilepton (9.1 fb ⁻¹)	16.4 ± 4.7 12 ± 13		
PHD 98, 112006 (2016) DO Lepton-jets (9.7 fb ⁻¹) PRD 90, 072011 (2014) DO Dileptons (9.7 fb ⁻¹)	10.6 ± 3.0 17.5 ± 6.3		
Tevatron combination	12.8 ± 2.5		
Lepton qղ Asymmetry (A	A ^I _{FB})		
CDF Lepton+jets (9.4 fb ⁻¹) PRD 80, 07260 (2013) CDF Diejender (9.4 fb ⁻¹) PRL 13, 04200 (2014) D0 Lepton+jets (9.7 fb ⁻¹) PRD 80, 07201 (2014) D0 Dileptons (9.7 fb ⁻¹) PRD 81, 020 (2013)	$10.5 \pm \frac{3.2}{2.9} \\ 7.2 \pm 6.0 \\ 5.0 \pm \frac{3.4}{3.7} \\ 4.4 \pm 3.9 \\ \end{array}$		
Tevatron combination	7.3 ± 2.0		
Lepton Δη Asymmetry (A	A" _{FB})		
CDF Dileptons (9.1 fb ⁻¹) PRL 113, 042001 (2014) D0 Dileptons (9.7 fb ⁻¹) PRD 88, 112002 (2013)	7.6 ± 8.2 12.3 ± 5.6		
Tevatron combination	10.8 ± 4.6		
NLO SM, W. Bernreuther and ZG. Si, PRD 86, 034026 (2012) NNLO SM, M. Czakon, P. Fiedler and A. Mitov, PRL 115, 052001 (2015)			
-20 0 20	40		

heavy flavour tagging validation

a number of control samples used to validate heavy flavour tagging performance

1.B + jet	fully reconstructed b -hadron plus jet, enriched in b -jets
2.D + jet	fully reconstructed c -hadron plus jet, enriched in b and c jets
$3.\mu + jet$	displaced muon $+$ jet, enriched in b and c jets
4.W+jet	isolated prompt muon, enriched in light jet content

- study all jets in control samples, and subsamples where jets contain muons
 - $\circ\,$ presence of muon in jet enriches (b,c) content further, but only probes a subsample
- b and c tagging efficiencies determined by performing simultaneous fits to samples 1-3 before and after tagging requirements applied
 - $\circ~$ "total" fit to impact parameter of track with highest p_T in jet
 - "pass" fit to two-dimensional BDT templates
- sample 4 used to study light jet mis-tag rate, and for data-driven templates

heavy flavour tagging validation

heavy favour tagging validation

fits shown for B+jet (left)

• uncertainties on yields by performing alternative fits using $M_{corr.}$ and SV multiplicity

heavy favour tagging validation

