Charmed baryon production with ALICE

Jaime Norman LPSC Grenoble CERN-LHC seminar — 13th March 2018

Laboratoire de Physique Subatomique et de Cosmologie

Outline

- Physics motivations
- Charmed baryon production measurements in pp and p-Pb collisions with ALICE
 - Λ_{c^+} production in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV
 - First measurement of Ξ_c^0 production in pp collisions at $\sqrt{s} = 7$ TeV
- Future measurements with ALICE (Run 3/4)

Open heavy-flavour production in pp collisions

- Heavy quarks (charm and beauty) are produced in hard partonic scattering processes
 - $m_{c,b} >> \Lambda_{QCD} \rightarrow \alpha_s(m_q^2) \propto \ln^{-1}(m_q^2/\Lambda_{QCD}^2) <<1$
 - m_Q sets hard scale perturbative QCD applicable

"Factorisation":

 $d\sigma_{AB \to h}^{hard} = f_{b/B}(x_1, Q^2) \otimes f_{a/A}(x_2, Q^2) \otimes d\sigma_{ab \to c}^{hard}(x_1, x_2, Q^2) \otimes D_{c \to h}(z, Q^2)$

Open heavy-flavour production in pp collisions

- Heavy quarks (charm and beauty) are produced in hard partonic scattering processes
 - $m_{c,b} >> \Lambda_{QCD} \rightarrow \alpha_s(m_q^2) \propto \ln^{-1}(m_q^2/\Lambda_{QCD}^2) <<1$
 - m_Q sets hard scale perturbative QCD applicable

"Factorisation":

 $d\sigma_{AB \to h}^{hard} = f_{b/B}(x_1, Q^2) \otimes f_{a/A}(x_2, Q^2) \otimes d\sigma_{ab \to c}^{hard}(x_1, x_2, Q^2) \otimes D_{c \to h}(z, Q^2)$

- Open heavy-flavour production measurements in pp collisions:
 - Important test of pQCD-based calculations
 - Sensitive to fragmentation functions determined from e+e- collisions
 - Sensitivity to **low-x gluon PDF** ($p_T \rightarrow 0$)

pp: Charm production at the LHC

- Cross sections of D mesons at the LHC in agreement with pQCD predictions at central rapidity (ALICE) and forward rapidity (LHCb)
 - FONLL, GM-VFNS: Next-to-leading order with next-to-leading-log resummation
- Similar observation at 2.76 TeV, 5 TeV and 13 TeV

 FONLL: M. Cacciari et al. JHEP 05 (1998), JHEP 10 (2012)

 GM-VFNS: B.A. Kniehl et al. Eur. Phys. J. C 41 (2005), Eur. Phys. J. C 72 (2012) 2082

 CERN-LHC SEMINAR 13-Mar-2018

 Jaime Norman (LPSC)

- Cross sections of B mesons at the LHC in agreement with pQCD predictions
 - FONLL, GM-VFNS: Next-to-leading order with next-to-leading-log resummation
 - POWHEG, MC@NLO: MC generators with next-to-leading order accuracy, with leading-log Parton shower
- Similar agreement of charm and beauty meson production with theory at Tevatron

 FONLL: M. Cacciari et al. JHEP 05 (1998), JHEP 10 (2012)

 GM-VFNS: B.A. Kniehl et al. Eur. Phys. J. C 41 (2005), Eur. Phys. J. C 72 (2012) 2082

 CERN-LHC SEMINAR 13-Mar-2018

 Jaime Norman (LPSC)

POWHEG: S. Frixione et al. JHEP 09 (2007) 126 MC@NLO: JHEP 08 (2003) 007

pp: total charm and beauty cross section

ALICE: Phys. Rev. C 94 (2016) 054908 ALICE: Phys. Lett. B 763, (2016) 507-509

Total charm and beauty cross section described well by predictions at NLO

Jaime Norman (LPSC)

pp: Charm quark fragmentation

Charmed hadron ratios sensitive to fragmentation process

- fragmentation fractions expected to be universal
 - → same in different systems, energies, etc
- Measurements in different collision systems (ee, ep, pp) and energies support this picture

EPJ C 76 (2016) no.7, 397

pp: Charm quark fragmentation

Can hadronisation be modified?

- Multi-parton interactions, coherence effects at LHC energies may affect hadronisation
- e.g. within PYTHIA, enhanced colour reconnection modes gives better agreement with measured N/K⁰s ratio
 - String formation beyond the leading-colour approximation, specific tuning of the colour reconnection parameters
 - String junctions provide new source of baryon production
- Gives physical, microscopic picture of hadronisation

Interesting to extend these studies to heavy-flavour sector $\rightarrow \Lambda_{C}^{+}/D^{0}$

C. Bierlich, J.R. Christiansen, Phys. Rev. D 92 (2015) 094010 J.R. Christiansen, P.Z. Skands JHEP 08 (2015) 003 9

CERN-LHC SEMINAR 13-Mar-2018

Jaime Norman (LPSC)

pp: D meson ratios

- Production ratios of D mesons compatible with theoretical predictions (in which charm fragmentation is based mainly on measurements in e⁺e⁻ collisions)
- Include Λ_C+: Very few charmed baryon production measurements in hadron colliders
 LHCb: Nuclear Physics, Section B 871 (2013),

CERN-LHC SEMINAR 13-Mar-2018

Jaime Norman (LPSC)

pp: Ξ_c^0 production

• Exotic charmed baryons in the news recently (Ξ_{cc}^{++} , Ω_c^0 resonances)

LHCb: LHCb-PAPER-2017-018 LHCb: Phys. Rev. Lett. 118, 182001 (2017)

- Charm hadron *production* measurements in hadron collisions limited to low-mass mesons and baryons
 - Only Ξ_c⁰ production measurements in e⁺e⁻ collisions
- New measurements of charmed baryons could provide further insight into hadronisation mechanisms

ARGUS: Phys. Lett. B247 (1990) 121
ARGUS: Phys. Lett. B303 (1993) 368.
CLEO: Phys. Rev. Lett. 74 (1995) 3113.
ARGUS: Phys. Lett. B342 (1995) 397. 12
BABAR: Phys. Rev. Lett. 95 (2005) 142003

p-Pb collisions

p-Pb: Heavy-flavour production

- p-Pb collisions traditionally used to separate 'hot' effects in Pb-Pb collisions (effects due to hot dense deconfined matter) from 'cold nuclear matter' effects (effects due to the presence of a nuclei)
 - Initial state effects: modification of nuclear parton distribution
 - Final-state effects: (energy loss? Collectivity?)

p-Pb: Heavy-flavour production

- p-Pb collisions traditionally used to separate 'hot' effects in Pb-Pb collisions (effects due to hot dense deconfined matter) from 'cold nuclear matter' effects (effects due to the presence of a nuclei)
 - Initial state effects: modification of nuclear parton distribution
 - Final-state effects: (energy loss? Collectivity?)
- D-meson nuclear modification factor
 R_{pPb} indicates minimal modification
 to p_T spectrum w.r.t pp collisions

$$P_{\text{DPb}}(\boldsymbol{p}_{\text{T}}) = \frac{1}{A} \frac{\mathrm{d}\sigma_{\text{pPb}} / \mathrm{d}\boldsymbol{p}_{\text{T}}}{\mathrm{d}\sigma_{\text{pp}} / \mathrm{d}\boldsymbol{p}_{\text{T}}}$$

$$\boldsymbol{B}_{\text{PDb}} < 1 = \text{suppression}$$

Ŗ

 $R_{pPb} < 1 = suppression$ $R_{pPb} > 1 = enhancement$

CERN-LHC SEMINAR 13-Mar-2018

Jaime Norman (LPSC)

p-Pb: Heavy-flavour production

- p-Pb collisions traditionally used to separate 'hot' effects in Pb-Pb collisions (effects due to hot dense deconfined matter) from 'cold nuclear matter' effects (effects due to the presence of a nuclei)
 - Initial state effects: modification of nuclear parton distribution
 - Final-state effects: (energy loss? Collectivity?)
- D-meson nuclear modification factor
 R_{pPb} indicates minimal modification
 to p_T spectrum w.r.t pp collisions
- Modification to charmed baryon production in p-Pb collisions?
 - (strange) //K ratio increases towards higher multiplicity

Charmed baryon production with ALICE

 Λ_{c^+} production in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

arXiv:1712.09581

Accepted by JHEP

First measurement of Ξ_c^0 production in pp collisions at $\sqrt{s} = 7$ TeV

arXiv:1712.04242

Submitted to PLB

 $\begin{array}{l} \Lambda_{c}^{+} \rightarrow p \text{K-}\pi^{+} \left(\text{BR} \sim 6.35\%\right) \\ \Lambda_{c}^{+} \rightarrow p \text{K}^{0}{}_{\text{S}} \quad \left(\text{BR} \sim 1.58\%\right) \\ \Lambda_{c}^{+} \rightarrow e^{+} \Lambda v_{e} \quad \left(\text{BR} \sim 3.6\%\right) \end{array}$

Charmed baryon reconstruction

Hadronic decays

- PID using TPC via dE/dx and TOF via time-of-flight measurement
 - nσ cuts, or Bayesian approach* to identify particles
- Cuts on decay topologies exploiting decay vertex displacement from primary vertex (BDT or rectangular cuts)
- **Signal extraction** via invariant mass distribution in bins of transverse momentum
- B feed-down subtraction using pQCD-based estimation of beauty baryon production
- Efficiency, acceptance corrections

Decay	Branching fraction (%)
$\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$	6.35
$\Lambda_{c}^{+} \rightarrow pK_{S}^{0}$	1.58

* See P. Antonioli CERN seminar "PID with a Bayesian approach in ALICE"

CERN-LHC SEMINAR 13-Mar-2018

Charmed baryon BDT analysis

Hadronic decays

- BDT analysis performed for the Λ_c⁺ → pK⁻π⁺ and Λ_c⁺ → pK⁰_S in p-Pb collisions
- BDT trained on simulated signal sample, and background sample from simulation or data
 - Input variables include p_T of decay products, topological properties of decay, and PID variables
- Final result merged with std. analysis taking into account correlation between analyses

Analysis allows for slightly better statistical precision + gain in signal efficiency

TMVA: PoS(ACAT)040

CERN-LHC SEMINAR 13-Mar-2018

Jaime Norman (LPSC)

Charmed baryon signal extraction

 Signal extracted from 2 < p_T < 12 GeV/c in p-Pb collisions

Hadronic decays

 Signal extracted from 2 < p_T < 8 GeV/c in pp collisions

Charmed baryon reconstruction

Semileptonic decays

- PID using TPC via dE/dx and TOF via time of flight measurement
 - Λ , Ξ candidates reconstructed
 - Photonic electrons removed from electron candidate sample
 - eΛ (eΞ) pairs with opening angle < 90° constructed
 - constructed **Wrong-sign (WS)** $e^{-\Lambda}$ ($e^{-\Xi^{-}}$) pairs subtracted from **right-sign (RS)** spectra $e^{+\Lambda}$ ($e^{+\Xi^{-}}$)

Decay	Branching fraction (%)		
$\Lambda_{c}^{+} \rightarrow e^{+} \Lambda v_{e}$	3.6		
$\Xi_c^0 \rightarrow e^+\Xi^-v_e$	Unknown		

Charmed baryon corrections

• Correct for:

Semileptonic decays

- $\Lambda_{b^0} \rightarrow e^-\Lambda_c^+ \bar{v}_e \rightarrow e^-\Lambda X$ ($\Xi_{b^0} \rightarrow e^-\Xi^-v_e X$) contribution in wrong-sign spectra:
 - Λ_b^0 contribution from Λ_b^0 measurement by CMS* up to 10% correction
 - Ξ_b^0 production not measured contribution estimated from BR(b $\rightarrow \Xi_b$)· BR($\Xi_b \rightarrow \Xi^{-1-vX}$) and BR(b $\rightarrow \Lambda_b^0$)·BR($\Lambda_b^0 \rightarrow \Lambda^{-vX}$) measurements in e⁺e⁻ collisions^{*} - Up to 2% correction
- $\Xi_c^{0,+} \rightarrow e^+ \Xi^{-,0}v \rightarrow e^+ \Lambda \pi^{-,0}v$ contribution in right-sign spectra for Λ_c^+ measurement (2 methods):
 - **1.** Determined from measured Ξ_c^0 cross section and measured BR($\Xi_c^+ \rightarrow e^+ \Xi^0 v_e$)/BR($\Xi_c^0 \rightarrow e^+ \Xi^- v_e$) ratio
 - 2. $c\tau(\Lambda_{c^+} \rightarrow \Lambda + X) < c\tau(\Xi_c \rightarrow \Xi + X \rightarrow \Lambda + X)$ MC fit to Λ distance from primary vertex

 $\rightarrow \Xi_c^{0,-}$ feed-down fraction = 0.46 ± 0.06

- Unfold $e^+\Lambda(e^+\Xi^-) p_T$ spectra to obtain Λ_c^+ ($\Xi c0$) spectra
- B feed-down subtraction using pQCD-based estimation of beauty baryon production (Λ_c+ only!)
- Efficiency, acceptance corrections

CERN-LHC SEMINAR 13-Mar-2018

CMS: Phys. Lett. B714 (2012) 136–157
 ALEPH: Phys. Lett. B384 (1996) 449
 ALEPH: Eur. Phys. J. C2 (1998) 197
 Phys. Rev. Lett. 74 (1995) 3113

Systematic uncertainties in pp collisions

Suctamatia una sourca	$\Lambda_{c}^{+} ->$	pK-π⁺	$\Lambda_{c}^{+} -> pK^{0}s$	
Systematic unc. source	Low p _T (%)	High <i>p</i> т (%)	Low <i>p</i> _T (%)	High <i>р</i> т (%)
Yield extraction	11	4	7	9
Tracking efficiency	4	3	7	5
Cut efficiency	11	12	5	6
PID efficiency	4	4	5	5
MC pT shape	2	2	negl.	1.5
B feed-down	+1 -4	+2 -11	negl. -2	+1 -4
BR	5.1		5.	0

Similar for p-Pb (backup)

Sustamatia una source	$\Lambda_{c}^{+} -> e^{+}\Lambda v_{e}$		Ξ _c ⁰ −> e ⁺ Ξ ⁻ ν _e	
Systematic unc. source	Low <i>p</i> _T (%)	High <i>p</i> ⊤ (%)	Low <i>p</i> _T (%)	High <i>р</i> т (%)
Yield extraction	17	17	5	5
Efficiency, acceptance	28	13	30	14
Missing neutrino momentum	3	11	29	10
B feed-down	negl. +1 -7		-	
BR	11		-	

Luminosity uncertainty = 3.5%

CERN-LHC SEMINAR 13-Mar-2018

Hadronic decay

analyses

Semileptonic

decay analyses

Jaime Norman (LPSC)

Results

$\Lambda_c^+ p_T$ -differential cross sections

• Good agreement between different decay channels + analysis methods

Λ_{c} + p_{T} -differential cross section in pp collisions

- Λ_c+ p_T-differential cross section
 significantly underestimated by theory
 - GM-VFNS: Next-to-leading order QCD with logarithms resumed to next-to-leading order
 - Non-perturbative fragmentation estimated from e+e- collision data
 B.A. Kniehl, G. Kramer: Phys. Rev. D 74 (2006) 037502
 - **POWHEG:** MC generator with next-to-leading order accuracy
 - PYTHIA parton shower

GM-VFNS: B.A. Kniehl et al. Eur. Phys. J. C 41 (2005), Eur. Phys. J. C 72 (2012) 2082 POWHEG: S. Frixione et al.: JHEP 09 (2007) 126

Jaime Norman (LPSC)

Λ_{c} + p_{T} -differential cross section in pp collisions

LHCb: Nucl. Phys.B871 (2013) 1-20

ALI-PUB-141405

$\Lambda_{c}^{+}p_{T}$ -differential cross section in p-Pb collisions

- Λ_c⁺ p_T-differential cross section
 significantly underestimated by theory
 - **POWHEG:** MC generator with nextto-leading order accuracy
 - PYTHIA parton shower
 - Shao et al. : Data-driven model tuned on pp data at forward rapidity
 - Parameterises scattering amplitude using fit to LHCb Λ_c^+ cross section in pp collisions (2 < y < 4.5, $\sqrt{s} = 7$ TeV, 2 < p_T < 8 GeV/c)
 - Both models include EPS09
 parameteristion of nuclear PDF

POWHEG: S. Frixione et al.: JHEP 09 (2007) 126 Shao et al: Eur. Phys. J. C 77 (2017)

$\Xi_c^0 p_T$ -differential cross section in pp collisions

- Ξ_c^0 production cross-section-times-branching-ratio measured from $1 < p_T < 8 \text{ GeV}/c$
 - Not feed-down corrected includes $\Xi_b \rightarrow \Xi_c {}^0X \rightarrow e^+\Xi^-v_e$

Λ_c+/D⁰ baryon-to-meson ratio

• Λ_{c^+}/D^0 in pp and p-Pb collisions compatible within uncertainties

Λ_c+/D⁰ baryon-to-meson ratio

- Λ_{c^+}/D^0 in pp and p-Pb collisions compatible within uncertainties
- ALICE measurement systematically higher than LHCb

Λ_c+/D⁰ baryon-to-meson ratio

Measurement	$\Lambda_{c}^{+}/D^{0} \pm \text{stat.} \pm \text{syst.}$	System	√s (GeV)	Kinematics
CLEO	0.119 ± 0.021 ± 0.019	ee	10.55	
ARGUS	0.127 ± 0.031 (stat.+syst.)	ee	10.55	
LEP average	0.113 ± 0.013 ± 0.006	ee	91.2	
ZEUS DIS	$0.124 \pm 0.034^{+0.025}_{-0.022}$	ер	320	$1 < Q^2 < 1000 \text{ GeV}^2, \ 0 < p_T < 10 \text{ GeV/c}, \ 0.02 < y < 0.7$
ZEUS γp HERA I	$0.220 \pm 0.035 ^{+0.027}_{-0.037}$	ер	320	130 < W < 300 GeV, Q² < 1 GeV², <i>p</i> _T > 3.8 GeV/c, η < 1.6
ZEUS γp HERA II	$0.107 \pm 0.018 ^{+0.009}_{-0.014}$	ер	320	130 < W < 300 GeV, Q² < 1 GeV², <i>p</i> _T > 3.8 GeV/c, η < 1.6
ALICE	0.543 ± 0.061 ± 0.160	рр	7000	1 < <i>p</i> _T < 8 GeV/c, η < 0.5
ALICE	0.602 ± 0.060 ^{+0.159} -0.087	pPb	5020	2 < <i>p</i> _T < 12 GeV/c, η < 0.5

- Baryon-to-meson ratio higher than previous measurements in different collision systems + kinematic regimes (+ LHCb at ~0.2-0.3)
- For a more robust comparison it will be very important to measure the Λ_c^+ down to $p_T=0$ with good precision

Λ_c^+/D^0 baryon-to-meson ratio vs models

- Λ_{c^+}/D^0 ratio higher than expectation from MC
- PYTHIA8 tune with enhanced colour reconnection closer to data
 - String formation beyond the leading-colour approximation
- Shao et al. model (tuned on LHCb pp result) closer to data
- Flat rapidity trend predicted by models not reproduced by ALICE and LHCb measurements

Λ_c^+/D^0 baryon-to-meson ratio vs models

• Λ_c^+/D^0 in p-Pb collisions recently measured by the LHCb experiment shows a flatter trend with rapidity

$\Xi_c^0 \rightarrow e^+\Xi^-v_e/D^0$ baryon-to-meson ratio

- Baryon-to-meson ratio $\Xi_c^0 \rightarrow e^+\Xi^-v_e/D^0$ higher than expectation from theory
- $\Xi_c^0 \rightarrow e^+\Xi^-v_e$ branching ratio not known: range in prediction bands (0.83-4.2%) is the envelope of theoretical predictions

Phys. Rev. D40 (1989) 2955, Phys. Rev. D43 (1991) 2939, Phys. Rev. D53 (1996) 1457

 PYTHIA8 with enhanced colour reconnection closer to data

Jaime Norman (LPSC)

pp(pp): Beauty baryon fragmentation

Indications that the fraction of b-baryons depends on the collision system

 b-baryon fragmentation in pp
 collisions over 2x that in e+e- at
 Z resonance (though
 uncertainties large)

- **2.** p_T dependence for $f_{\Lambda b} / (f_u + f_d)$ [3] ($f_q = B(b \rightarrow B_q)$) at the LHC
 - Similar observation at the Tevatron in pp̄ collisions

CDF: Phys.Rev.D77:072003,2008

Table 1: Fragmentation fractions of b quarks into weakly-decaying b-hadron species in $Z \rightarrow b\bar{b}$ decay, in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV.

b hadron	Fraction at Z $[\%]$	Fraction at $\overline{p}p[\%]$
B^+, B^0	40.4 ± 0.9	33.9 ± 3.9
B_s	10.3 ± 0.9	11.1 ± 1.4
b baryons	8.9 ± 1.5	21.2 ± 6.9

http://pdg.lbl.gov/2015/reviews/rpp2015-rev-b-meson-prod-decay.pdf

LHCb: Phys. Rev. D85, 032008 (2012)

Λ_c+ nuclear modification factor *R*_{pPb}

$$R_{\rm pPb}(p_{\rm T}) = \frac{1}{A} \frac{{\rm d}\sigma_{\rm pPb} / {\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp} / {\rm d}p_{\rm T}}$$

 $R_{pPb} < 1 =$ suppression $R_{pPb} > 1 =$ enhancement

- Λ_{c^+} nuclear modification factor R_{pPb}
 - consistent with unity
 - Consistent with D-meson R_{pPb}

Minimal modification w.r.t pp collisions within uncertainties

Λ_c+ nuclear modification factor R_{pPb}

- Λ_c⁺ R_{pPb} consistent with models assuming cold nuclear matter effects, or 'hot' medium effects
 - POWHEG + PYTHIA with CT10NLO+EPS09 PDF parameterisation of nuclear PDF
 - **POWLANG** 'small-size' QGP formation, collisional energy loss only

CERN-LHC SEMINAR 13-Mar-2018

Jaime Norman (LPSC)

POWHEG: JHEP 09 (2007) 126 POWLANG: JHEP 03 (2016) 123

Summary and perspectives in pp and p-Pb collisions

- Λ_{c}^{+} baryon production in p-Pb collisions similar to that in pp collisions
- Charmed baryon production in pp collisions higher than expectations from e⁺e⁻ collisions
 - Is baryon formation different in pp collisions than in e+e-/ep collisions?
- Run 2 data will aid in answering some open questions

Larger pp datasets collected at 5 TeV, 13 TeV Larger p-Pb dataset collected at 5 TeV

Summary and perspectives in pp and p-Pb collisions

- Λ_{c}^{+} baryon production in p-Pb collisions similar to that in pp collisions
- Charmed baryon production in pp collisions higher than expectations from e⁺e⁻ collisions
 - Is baryon formation different in pp collisions than in e+e-/ep collisions?
- Run 2 data will aid in answering some open questions

Larger pp datasets collected at 5 TeV, 13 TeV Larger p-Pb dataset collected at 5 TeV

- *p*_T-dependent baryon production?
 - Fragmentation/coherence effects manifest themselves in different baryon-tomeson p_T shapes
 - Kinematic range covered by different measurements not exactly the same important to extend measurement to $p_T=0$
- Multiplicity dependent baryon production?
 - Modification to baryon production could increase at higher multiplicities
- Energy-dependent baryon production?
 - Continuity from e⁺e⁻ energies → LHC energies?

CERN-LHC SEMINAR 13-Mar-2018

Jaime Norman (LPSC)

Pb-Pb: Heavy-flavour production

Pb-Pb: Heavy-flavour production

- Heavy-flavour provide unique probe of the hot, dense matter created in **heavy-ion collisions**
 - High Q²
 - Short formation time
 - Minimal in-medium formation/annhilation

Probe deconfined phase...

- Significant charm-quark energy loss.
- Charm quarks participate in the collective motion of the system

Jaime Norman (LPSC)

 $\rightarrow v_2 = \langle \cos[2(\varphi - \Psi_2)] \rangle$

Pb-Pb: Heavy-flavour production

- Heavy-flavour provide unique probe of the hot, dense matter created in **heavy-ion collisions**
 - High Q²
 - Short formation time
 - Minimal in-medium formation/annhilation

Probe deconfined phase...

- Significant charm-quark energy loss
- Charm quarks participate in the collective motion of the system

...as well as hadronisation

- Hadronisation through recombination (coalescence) of heavy quarks with light quarks close in phase space
 - -> Modifies relative hadron abundances
 - -> Modifies hadron p_T spectra
- D_s and charmed baryons (e.g. Λ_c) particularly sensitive to hadronisation via coalescence

CERN-LHC SEMINAR 13-Mar-2018

Pb-Pb: D_s production

 Enhanced strangeness in Pb-Pb collisions - an enhancement of D_s with respect to non-strange D mesons expected from models including coalescence as hadronisation mechanism

→ hint of enhancement seen in Pb-Pb collisions

→ same observation by STAR in Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV

STAR: arXiv:1704.04364

Pb-Pb: Heavy baryon-to-meson ratio

- The baryon-to-meson ratio in the charm sector in Pb-Pb collisions is a sensitive probe of:
 - Hadronisation mechanisms in the Quark-Gluon Plasma
 - Possible existence of [ud]
 bound diquark states in the Quark-Gluon Plasma

Lee et al.: Phys.Rev.Lett. 100 (2008) 222301 Ko et al.: Phys.Rev. C79 (2009) 044905 Plumari et al.: arXiv:1712.00730

- First measurement of the Λ_c/D⁰ ratio in AA collisions by STAR shows a significant enhancement with respect to pure fragmentation
 STAR: arXiv:1704.04364
 - Reference measurement in pp or pA collisions essential for interpretation of results

Pb-Pb: Heavy baryon-to-meson ratio

- First measurement of the Λ_c/D⁰ ratio in AA collisions by STAR shows a significant enhancement with respect to pure fragmentation
 STAR: arXiv:1704.04364
 - Reference measurement in pp or pA collisions essential for interpretation of results

Towards Run 3 and 4

J. M. Jowett, workshop on the physics of HL-LHC, and perspectives at HE-LHC, CERN, 30/10/2017

- Large upgrade to the ALICE apparatus for run 3 and 4, to exploit the higher interaction rate
- 50kHz Pb-Pb interaction rate foreseen
- Requested ALICE luminoisty of 10 nb⁻¹ (+3 nb⁻¹ at low ALICE B field)
 - -> 50-100x min. bias Pb-Pb sample from run 2

ALICE upgrade

Upgrade LOI: J.Phys. G41 (2014) 087001

ITS upgrade

- 7 layer silicon pixel detector (Monolithic Active Pixel Sensors)
 - Closer to interaction point
 - 39mm —> 22mm
 - Reduced material budget
 - e.g. inner barrel X/X⁰ per layer ~1.14% —> 0.3%
 - Reduced pixel size

• 50µm x 425µm —> 28µm x 28µm

Run 3+4 projection: Λ_c^+/D^0

 Λ_c⁺ baryon will be accessible down to low p_T in Pb-Pb collisions → sensitive to baryon formation via coalescence

Run 3+4 projection: beauty baryons

- Λ_{c^+} baryon will be accessible down to low p_T in Pb-Pb collisions \rightarrow sensitive to baryon formation via coalescence
- $\Lambda_{\rm b^0}$ accessible down to 4 GeV/c \rightarrow also sensitive to hadronisation mechanisms
- Further studies incorporating multivariate analysis techniques (BDTs) to measure Λ_{c}^{+} and Λ_{b}^{0} production with improved precision are ongoing

ITS upgrade TDR: J. Phys. G 41 (2014) 087002

Summary

- Charmed baryon production measurements sensitive to hadronisation mechanisms
 - → **pp collisions:** test of fragmentation/ effects beyond leading colour approximation
 - → p-Pb collisions: Measure 'cold' nuclear matter effect on baryon production
 - → Pb-Pb collisions: Quantify the role of hadronisation via coalescence
- First measurement by ALICE of charmed baryon production in pp and p-Pb collisions intriguing; *violation of fragmentation universality?*
- Near future: more precise/differential measurements in pp and p-Pb collisions will help in answering open questions (+ first Λ_c+ measurement in Pb-Pb collisions with run 2 data expected)
- Run 3 and 4: Precise measurement of charmed baryon production in Pb-Pb collisions after the ALICE upgrade

Backup

Strange baryon-to-meson ratio

- Enhancement in the baryon-to-meson ratio is also expected if coalescence has a role to play in hadronisation
 - Proton/pion and *N*/K⁰_s ratios **enhanced in Pb-Pb collisions**
 - A similar enhancement is seen in high multiplicity p-Pb collisions

Coalescence? flow? Interplay between both effects?

pp and p-Pb collisions

- Many of these studies fit into the broader scope of understanding many 'Pb-Pblike' phenomena emerging in high multiplicity pp/p-Pb collisions:
 - Di-hadron azimuthal correlations to Large Δη
 Large Δη
 - Mass-dependent azimuthal anisotropy ALICE: Phys. Lett. B 726 (2013) 164-177

ALICE: Phys. Lett. B 728 (2014) 25 CMS: Eur. Phys. J. C 74 (2014) 2847

Strangeness enhancement...

ALICE: Nature Physics 13, 535–539 (2017)

What is the origin of the continuity of phenomena seen from small to large systems?

p_T -differential cross section measurement (Λ_C^+)

CERN-LHC SEMINAR 13-Mar-2018

Jaime Norman (LPSC)

p_T -differential cross section measurement (Ξ_C^0)

Extracted raw yield in the fiducial acceptance

Semileptonic RS-WS subtraction

 Wrong-sign subtracted eE spectrum shape in agreement with expectation from simulation

Systematic uncertainties in p-Pb collisions

STD analysis

BDT analysis

	Λ _c + —> pK ⁻ π+		Λ_{c}^{+} ->	> pK⁰s	
Systematic unc. source	Low <i>p</i> _T (%)	High <i>р</i> т (%)	Low <i>p</i> _T (%)	High <i>р</i> т (%)	
Yield extraction	10	11	10	10	
Tracking efficiency	10	7	10	6	
Cut efficiency	9	12	5	7	
PID efficiency	6	6	6	6	
MC pT shape	2	2	1	3	
B feed-down	+1 -5	+2 -10	negl.	negl.	
BR	5.7	1	5.	0	

	$\Lambda_{c}^{+} ->$	рК-π+	$\Lambda_{c}^{+} -> pK^{0}s$	
Systematic unc. source	Low <i>p</i> _T (%)	High <i>р</i> т (%)	Low <i>p</i> _T (%)	High <i>p</i> т (%)
Yield extraction	7	4	11	8
Tracking efficiency	10	7	10	6
Cut efficiency	8	6	5	8
PID efficiency	negl.	negl.	negl.	negl.
MC pT shape	negl.	3	negl.	negl.
B feed-down	+1 -5	+2 -10	negl. -3	+2 -7
BR	5.1		5.	0

Luminosity uncertainty = 3.7%

CERN-LHC SEMINAR 13-Mar-2018

LHCb Λ_c^+/D^0 in p-Pb collisions

 Lc/D0 in p-Pb collisions measured by the LHCb experiment shows a flatter trend with rapidity