TCT for the characterization of silicon interfaces obtained by CMOS compatible wafer bonding

Jacopo Bronuzzi

Alessandro Mapelli¹, Michael Moll¹, Luciano Musa¹, Walter Snoeys¹, Petra Riedler¹, Eric Rouchouze³, Catherine Charrier³, Frank Fournel³, Jean-Michel Sallese²

¹Detector Technologies Group, EP Department, CERN, ²Group of Electron Device Modeling an Technology, EDLAB, EPFL, ³Silicon Platform, CEA-LETI

¹<u>https://ep-dep-dt.web.cern.ch/</u> ²<u>http://www.leti-cea.fr/cea-tech/leti/Pages/innovation-industrielle/innover-avec-le-Leti/LETI-3S.aspx</u> ³<u>https://edlab.epfl.ch/</u>

EP-DT-DD meeting 01 December 2017

- CMOS compatible wafer bonding for the fabrication of silicon detectors
- Electrical characterization of Si-Si bonded interfaces
- Proof of principle of electrical injection TCT

Silicon pixel detectors

Hybrid

Monolithic

L. Rossi et al., Pixel Detectors: From Fundamentals to Applications, *Springer*, 2006. P. Riedler, Monolithic silicon pixel sensors and technology challenges of the ALICE ITS, 2015, https://indico.cern.ch/event/352490/attachments/1155083/1659960/DT_training_seminar15092015.pdf

Bonding of monolithic detectors

- Motivation: possibility of choice of different bulks type
 - High resistivity silicon for sensing
 - Low resistivity silicon for CMOS circuit
- CMOS compatible wafer bonding for monolithic pixel detectors:
 - Thinning of CMOS wafers
 - Bonding with sensing bulk
 - Low temperature (<400°C)
 - Silicon bulk fracture strength reached
 - Oxide-free interface
- Conduction properties of the bonding interface to be characterized

- CMOS compatible wafer bonding for the fabrication of silicon detectors
- Electrical characterization of Si-Si bonded interfaces
- Proof of principle of electrical injection TCT

Two investigation approaches

cea

TCT on Schottky diodes

INVESTIGATOR for bonding interface characterization

Standard INVESTIGATOR from ALICE ITS:

- Different layouts tested
- Epitaxial layer (> 1 kΩ cm) on low resistivity silicon wafer
 Bonded INVESTIGATOR (fabricated by G-ray):
- Thinning of back side of ITS wafer
- Surface preparation

EP-DT

Detector Technologies

 Bonding to different types of silicon wafers

Test list	
Bottom wafer	Thickness
High resistivity silicon bulk > 5 kΩ cm	700um
	90um
	55um
Epitaxial silicon Epi > 1 kΩ cm	Epi 20um, Bulk 700um

cea

- 1. Drift: charges in the depletion region are collected by the corresponding n-well
- 2. Diffusion: charges diffuse in silicon. If they reach a depletion they are collected.
 - Charges generated from one particle can be collected by different n-wells (charge sharing)
 - Diffusing charges are reflected by low resistivity silicon bulk

Measurements on bonded INVESTIGATOR chips – Fe55 Normalized Counts Cluster 700 um 90 um multiplicity 55 um Standard (number of pixels collecting charges per event) < 206 0.4 0.2 0 8 9 2 3 5 6 7 10 4 Absence of Cluster Size [# pixels] charge sharing Normalized Counts — Standard EPI There should 0.6 Charges pass be charge Charges are 0.4 through the sharing for absorbed by the interface and 0.2 interface epitaxial silicon diffuse in the bulk 2 3 5 7 8 9 10 substrates 4 6 Cluster Size [# pixels] 01 EP-DT CERN cea December J. Bronuzzi - EP-DT-DD meeting **Detector Technologies** ÉCOLE POLYTECHNIQUE ÉDÉRALE DE LAUSANNE

2017

8

Measurements on bonded INVESTIGATOR chips – Sr90

- Weak charge sharing observed
- Consistent with the hypothesis of not conduction through bonding interface

SEM analysis of bonded INVESTIGATOR

INVESTIGATOR cross section

Metal layers
Epitaxial silicon
High ρ silicon

cea

EP-DT

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE **Detector Technologies**

J. Bronuzzi - EP-DT-DD meeting

Two investigation approaches

cea

TCT on Schottky diodes

TCT for bonding interface characterization

Amorphous silicon at the bonding interface can be modeled as a layer with a trap density 1e16 cm⁻³ Analytical modeling of TCT transient current for bonding interfaces, 2 cases:

J. Bronuzzi et al., "Principle and modelling of transient current technique for interface traps characterization in monolithic pixel detectors obtained by CMOS-compatible wafer bonding", JINST, 11 P08016, 2016.

TCT for bonding interface characterization

Traps not detected

- Low voltage: depletion region does not reach traps layer
- Presence of both donors and acceptors in same quantity: ionized traps will result is neutral charge
- **Presence of acceptor**: ionized acceptors generate negative charge that do not give double peak electric field

Traps detected

- **High voltage**: depletion region reaches traps layer
- **Presence of donors**: ionized donors generate positive charge that gives double peak electric field

01

Decembler

2017

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

Test structures fabrication

CMOS compatible bonding of silicon wafers at CEA-LETI:

- Silicon wafers: 8 inches, magnetic Czochralski Ptype, ρ > 5000 ohm.cm
- Thinning (tolerance 1 μm), to have interface close to surface, and bonding (pressure 30 kN)
- Downsizing from 8 inches to 4 inches through laser cut (Sil'Tronix)
- Bonding parameters:
 - Top wafer thickness: 20 μm, 50 μm
 - Surface preparation: hydrophobic, hydrophilic
 - Annealing temperature: 400 °C, T amb
- Fabrication of Schottky diodes on top of wafers at the Center of Micronanotechnology (CMi) at EPFL, to be studied with TCT

CMi: <u>https://cmi.epfl.ch/</u>

Start wafers	
<i>Thinning top wafer</i>	
Bonding	
Downsizing	
Schottky diodes fabrication	

Validation of TCT on Schottky diodes CMI EPFL Center of MicroNanoTechnology

- Tests performed on structures fabricated at CMi
- 4 inches wafers
- Resistivity > 2000 ohm.cm
- Float zone P-type
- Al for schottky contacts
- Pt for ohmic contacts

Next steps:

- Schottky diodes fabrication on bonded wafers
- TCT measurements on Schottky diodes on bonded wafers

2017

CMi: <u>https://cmi.epfl.ch/</u>

- CMOS compatible wafer bonding for the fabrication of silicon detectors
- Electrical characterization of Si-Si bonded interfaces
- Proof of principle of electrical injection TCT

Electrical injection TCT

- Instead of Schottky diodes, integrate TCT charge injection in silicon
- PiN Diode doping profile modified
- Nanosecond voltage pulse applied on the N-type well

Physical principle

Thermionic emission

 $J_i/J_1 = e^{\frac{\phi_{B_1} - \phi_{B_i}}{kT}}$

cea

EP-DT

Detector Technologies

CERN)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

J. Bronuzzi - EP-DT-DD meeting

Light and electrical injection

Fabrication and measurements setup

Device fabricated at CMi

- Aluminum
- High resistivity silicon

- Silicon dioxide
- Spacing between n and p-type doped silicon

Setup components

Proof of principle of el-TCT

Measurements: comparison electrical and optical TCT

Comparison TCAD simulations and measurements

Proof of principle of electrical TCT

- Charge calculated as the integral of the transient current in time
- Measured charge has a behavior similar to simulated charge
- Measured charge follow the same physical principle of simulated charge, thermionic emission

Conclusions and outlook

Direct wafer bonding is being investigated for an "hybrid" approach to manufacture monolithic pixel detectors.

- A model for TCT across silicon bonded interfaces has been developed.
- INVESTIGATOR wafers have been thinned and bonded to different types of substrates to study the bonding interfaces.
- Shottky diodes will be fabricated on already bonded plain wafers to study the interfaces with TCT at the beginning of 2018.

A new type of charge injection has been studied for TCT.

- Principle of electrical injection TCT (el-TCT) has been proven.
- EI-TCT will be evaluated for online measurements of radiation induced damage in silicon samples in IRRAD next year.

Thank you for the attention Questions?

Fabrication of monolithic pixel detectors

Electronics driven

- Low resistivity silicon
- High performance electronics
- Low performance sensing (small depletion region)

Sensor driven

- High resistivity silicon
- Difficult electronics design
- High performance sensing (large depletion region)

L. Rossi et al., Pixel Detectors: From Fundamentals to Applications, Springer, 2006.

