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Outline of this talk

°* Gravitational waves (GWs): a new tool for probing fundamental

physics in extreme conditions

rrarit:

°* Theoretical models needed to extract the information encoded in GWs from
binary systems

°* Main focus of this talk: GVV signatures of neutron star matter during an inspiral

°* Qutlook




Neutron stars (NSs)

: _ . . debris from a supernova
» densest stable material objects known in the universe explosion in 1054

» 1939: theoretical description [Oppenheimer & Volkoff]

» thousands observed to date

» masses = |-2 solar masses (?), radii ~ 8-16 km (?)

crushed to neutron-star

compactness

Black hole

What is the nature of matter in such extreme conditions?



Conjectured NS structure

phases of QCD
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» many theoretical difficulties

» far extrapolations from known physics

crust ~ km
> . i
neutron rich ions,

free neutrons

outer core ~ few km
uniform liquid

deep core

~2-10x nuclear density
exotic states of matter?
deconfined quarks?



Astrophysics: matter impacts global NS properties

NS matter models
(equations of state)

NS mass vs. radius

» Masses measured to ~0.0001%
from pulsar timing
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New probe of NS matter:

gravitational waves (GWVs)

» ~2 Msun NSs observed

» Radii: very difficult to determine,
requires many assumptions

» Upcoming results from NICER:
new kind of measurement
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Interpreting GVV signals via matched filtering
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Data & Best-fit Waveform: LIGO Open Science Center (losc.ligo.org); Prediction & Animation: C.North/M.Hannam (Cardiff University)




Interpreting GVV signals via matched filtering
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Interpreting GVV signals via matched filtering
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very sensitive to the phase




Interpreting GVV signals via matched filtering
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very sensitive to the phase




Imprints of objects’ internal structure on GWs

—— black holes (aligned spins)

What changes for non-black hole objects?



Imprints of objects’ internal structure on GVVs

—— black holes —— other objects
NV
regime
R
o echoes,
Q ringdown,
- tidal disruption,
~ point-masses, postmerger,
same signals

[outside sensitive
[~103 cycles for few-Msun band for few-Msun
objects in LIGO] objects in LIGO]



Imprints of objects’ internal structure on GVVs

—— black holes —— other objects

\/\/\/\/\/\/\/ I\I\NWNV\/ e

% N Aﬁ R echoes,
<&> <&> VH@ ”mﬁ‘:ﬁ ringdown,

Q‘N
(_/0 — ~— G tidal disruption
L 4
=~ point-masses, rotatlon.al absence of postmerger,
deformations horizon

same signals

tidal effects

(absorption)

[outside sensitive
[~103 cycles for few-Msun + tidal excitation of internal band for few-Msun

objects in LIGO] oscillation modes objects in LIGO]



Dominant tidal effects

+ tidal field (companion)
Q Q induced deformation Qns = A Eitidal
)

tidal deformability ~ computed from Einstein’s egs.

=0 f black hol
Or a Dlack hole [Flanagan & TH 2008, TH 2008]

Mass vs. radius tidal deformability vs. mass
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» Straightforward extension to higher multipoles [Damour- Nagar, Binnington-Poisson 2009],



Influence on the GWs

» Energy goes into deforming the NS Y
—
@ .,
» moving tidal bulges contribute to gravitational radiation *—
Qns = A Etidal
1 (MQ)10/3

» Imprint in GW phasing: | Adgyw ~ A VG M = my + my
» for NS-NS: most sensitive to the weighted average: [Flanagan & TH, 2008,

Vines+ 2011]
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» More sophisticated models incl. more details of NS’s tidal response available

[Damour, Nagar, Bini, Faye, Bernuzzi, + , Steinhoff+/Hinderer+, Maselli+, Dietrich+, Kawaguchi+]
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Examples of broader uses of tidal deformability

» nuclear equation of state, quark matter

» QCD vacuum energy [Csaki+ arXiv:1802.0481 3] a

» Other observables:
» astrophysics: NS radius

» Nuclear experiments: neutron skin thickness of lead 208 [Fattoyev+ 1711.06615]

» dark matter halos [e.g. Nelson + arXiv:1803.03266v ]



Measurements of tidal deformability for GW 170817

» Distance: ~40 Mpc, total mass: ~ 2.74 Msun
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EoS results using restrictive assumptions

* low-spin priors ¥<0.05

°* both objects have the same equation of state (EoS)

°* Results with spectral EoS parameterization [Lindblom ] incl. ~1.97Msun constraint
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Was GW170817 a NS + black hole?

» Tidal effects in GW phase: difficult to distinguish NS-BH from NS-NS with softer EoS

» Electromagnetic counterparts: can exclude extreme corners of parameter space

New NR simulations Samaya Nissanke’s talk (next)

[F. Foucart, I.Vincent,+]:

. Requirements on ejecta (incl. large uncertainties)
One-to-one comparison
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Was GW170817 a NS + black hole?

» More interesting: joint analysis with electromagnetic counterpart information

» Posterior probability distribution of inferred source parameters when
assuming GW 170817 was a NS-BH + EM constraints

Mass ratio
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Outlook

» Anticipated detector improvements:

» observe binary NSs ~ 2x further away (or at same distance with better accuracy)

» Improve high-frequency sensitivity by ~ factor of 5

Advanced LIGO
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Living Reviews in Relativity; 21:3; 2018

» Third-generation detectors

» e.g. Einstein Telescope:
~ |0x better sensitivity




Outlook

» Combine information from multiple binary NS detections!? “‘ﬁ d
Current rate estimate: 3204740 Gpc3 yr-|
For 1000 Gpc-3 yr-!: =40 per yr (aLIGO design)

» Measure subdominant effects!?
» Oscillation modes - asteroseismology?

» Observe merger/postmerger, tidal disruption!?

Much interesting science potential — requires advances in modeling

- higher accuracy, larger parameter space coverage

- include more realistic physics

- flexibility to look for new phenomena/effects/physics o

|5



Conclusion

° Abundant scientific opportunities with GWs ,.»
‘ - ,

° much of the potential remains to be explored

° Accurate models essential to extract source physics & gain deeper understanding

° Much recent progress but further advances needed

> GW source modeling Q
° Link to EM counterparts Q

h.’%7...

° data analysis strategies & tools

° Connection with developments in nuclear physics / pulsars / theory

* Expect a wealth of new insights in the coming years

Credit: T.Dietrich




