Probing the fundamental physics of supra-dense matter with gravitational waves from neutron star binaries

Radboud University Nijmegen, NL

Outline of this talk

 Gravitational waves (GWs): a new tool for probing fundamental physics in extreme conditions

• Theoretical models needed to extract the information encoded in GWs from binary systems

Outlook

Neutron stars (NSs)

- densest stable material objects known in the universe
- ▶ 1939: theoretical description [Oppenheimer & Volkoff]
- thousands observed to date
- ▶ masses ≈ 1-2 solar masses (?), radii ~ 8-16 km (?)

debris from a supernova explosion in 1054

(neutron star rotating at 30 rev/sec)

crushed to neutron-star compactness

crushed

Black hole

What is the nature of matter in such extreme conditions?

Conjectured NS structure

Credit: F. Linde

- many theoretical difficulties
- far extrapolations from known physics

deep core ~2-10x nuclear density exotic states of matter? deconfined quarks?

Astrophysics: matter impacts global NS properties

- ► Masses measured to ~0.0001% from pulsar timing
- ▶ ~2 Msun NSs observed
- Radii: very difficult to determine, requires many assumptions
- Upcoming results from NICER: new kind of measurement

New probe of NS matter: gravitational waves (GWs)

D. A. Hardy

Imprints of objects' internal structure on GWs

What changes for non-black hole objects?

Imprints of objects' internal structure on GWs

same signals

[~103 cycles for few-Msun objects in LIGO]

 \approx point-masses,

tidal disruption, postmerger,

[outside sensitive band for few-Msun objects in LIGO]

Imprints of objects' internal structure on GWs

black holes other objects complex merger regime echoes, ringdown, tidal disruption, rotational postmerger, absence of \approx point-masses, deformations horizon same signals tidal effects (absorption)

[~10³ cycles for few-Msun objects in LIGO]

+ tidal excitation of internal oscillation modes

... [outside sensitive band for few-Msun

objects in LIGO]

Dominant tidal effects

tidal deformability

=0 for a black hole

computed from Einstein's eqs.

[Flanagan & TH 2008, TH 2008]

Straightforward extension to higher multipoles [Damour- Nagar, Binnington-Poisson 2009]

Influence on the GWs

Energy goes into deforming the NS

moving tidal bulges contribute to gravitational radiation

 $Q_{
m NS} = \lambda \; \mathcal{E}_{
m tidal}$

▶ Imprint in GW phasing:

$$\Delta\phi_{
m GW}^{
m tidal} \sim rac{\lambda}{M^5}$$

$$M = m_1 + m_2$$

▶ for NS-NS: most sensitive to the weighted average:

$$egin{aligned} ilde{oldsymbol{\Lambda}} &= rac{1}{26} \left[\left(1 + 12 rac{m_2}{m_1}
ight) rac{oldsymbol{\lambda_1}}{\lambda_1} + \left(1 + 12 rac{m_1}{m_2}
ight) rac{oldsymbol{\lambda_2}}{m_2}
ight] \end{aligned}$$

[Flanagan & TH, 2008, Vines+ 2011]

▶ More sophisticated models incl. more details of NS's tidal response available

[Damour, Nagar, Bini, Faye, Bernuzzi, +, Steinhoff+/Hinderer+, Maselli+, Dietrich+, Kawaguchi+]

Examples of broader uses of tidal deformability

- nuclear equation of state, quark matter
- QCD vacuum energy [Csaki+ arXiv:1802.04813]

- Other observables:
 - astrophysics: NS radius
 - Nuclear experiments: neutron skin thickness of lead 208 [Fattoyev+ 1711.06615]

- exotic objects [e.g. Cardoso, Pani,+, Sennett+, Johnson-McDaniel+]
- axion-like particles [e.g. Baumann+1804.03208]
- dark matter halos [e.g. Nelson + arXiv:1803.03266v1]

Measurements of tidal deformability for GW170817

- ▶ Distance: ~40 Mpc, total mass: ~ 2.74 Msun
- Results for dimensionless tidal deformability $\Lambda = rac{\Lambda}{m_{5}^5}$

Different GW models

LVC arXiv:1805.11579

EoS results using restrictive assumptions

- low-spin priors χ <0.05
- both objects have the same equation of state (EoS)
- Results with spectral EoS parameterization [Lindblom] incl. ~1.97Msun constraint

Was GW170817 a NS + black hole?

- Tidal effects in GW phase: difficult to distinguish NS-BH from NS-NS with softer EoS
- Electromagnetic counterparts: can exclude extreme corners of parameter space

New NR simulations

[F. Foucart, T. Vincent, +]:

One-to-one comparison

Samaya Nissanke's talk (next)

Requirements on ejecta (incl. large uncertainties)

TH, Nissanke, Foucart,

Hotokezaka+ arXiv:1808.03836

Was GW170817 a NS + black hole?

- ▶ More interesting: joint analysis with electromagnetic counterpart information
 - Posterior probability distribution of inferred source parameters when assuming GW170817 was a NS-BH + EM constraints

Key input: model for remnant mass given progenitor NS-BH parameters

Foucart, TH, Nissanke 1807.00011

TH, Nissanke, Foucart, Hotokezaka + 1808.03836

Outlook

- Anticipated detector improvements:
 - by observe binary NSs ~ 2x further away (or at same distance with better accuracy)
 - ▶ Improve high-frequency sensitivity by ~ factor of 5

Living Reviews in Relativity; 21:3; 2018

- Third-generation detectors
 - e.g. Einstein Telescope:
 - ~ I0x better sensitivity

Outlook

Combine information from multiple binary NS detections?

Current rate estimate: 320–4740 Gpc-3 yr-1 [LVC PRL 119, 161101 (2017)]

For 1000 Gpc-3 yr-1: ~ 40 per yr (aLIGO design) [LVC Class. Q. Grav. 27, 173001 (2010)]

- Measure subdominant effects?
- Oscillation modes asteroseismology?
- Observe merger/postmerger, tidal disruption?

Much interesting science potential — requires advances in modeling

- higher accuracy, larger parameter space coverage
- include more realistic physics
- flexibility to look for new phenomena/effects/physics

• • • •

Conclusion

- Abundant scientific opportunities with GWs
 - much of the potential remains to be explored

- Accurate models essential to extract source physics & gain deeper understanding
- Much recent progress but further advances needed
 - GW source modeling
 - Link to EM counterparts
 - data analysis strategies & tools
 - Connection with developments in nuclear physics / pulsars / theory

