

Rare, exotic and invisible Higgs decays at the LHC

Abideh (Nadjieh) Jafari CERN

XIIth International Workshop on Interconnection between Particle Physics and Cosmology

22.08.2018, Zürich

Hot news of 2012!

Thank you Higgs for all the fun over the six years!

A journey for new discoveries!

A journey for new discoveries!

A journey towards precision

- Thanks to the precision
 - Strong motivation to look for rare Higgs boson decays
 - Still room for decays into BSM!

HIGGS RARE DECAYS *Coupling to 2nd generation fermions*

• A rare process: $B(H \rightarrow \mu\mu) = 0.022\%$

- Main targets: VBF and ggH
- Selection based on two muons and additional jets
- Categorization: event kinematics (BDT) and m_{µµ} resolution

Trained for all signals

Trained for VBF

arXiv:1807.06325 Submitted to PRL

arXiv:1807.06325 Submitted to PRL

- BDT transformed for a uniform signal contribution
- Categories with enough yield, subdivided in 3 regions based on η_{μ}

 $\rightarrow m_{\mu\mu}$ resolution

- Parametric models for signal and falling $m_{\mu\mu}$ background
- The effect of spurious signal and the bias on background models are taken as systematics uncertainties

Cat. 12

B component subtracted

135

Data

± 1σ

 $\pm 2\sigma$

140

145

 $m_{\mu\mu}$ [GeV]

150

S+B fit

B component

35.9 fb⁻¹ (13 TeV)

Simultaneous fit to all categories

CMS Preliminary

 $\hat{\mu}_{125} = 0.7$ for m_H=125 GeV

H→uu

115

120

GeV

Events / 0.5

450 E

400

300

250

130

125

Observed (expected) UL on $\sigma \times B(H \rightarrow \mu\mu)$ 2.1 (2.0) × SM

ATLAS-CONF-2018-026 arXiv:1807.06325 Submitted to PRL

Probing the Higgs coupling with light and c quarks!

- Complementary to direct $H \rightarrow c\bar{c}$ searches
- The LHC direct limit on $\sigma_{ZH} \times B(H \rightarrow c\bar{c})$ is ~100×SM

$H \rightarrow M\gamma$ at LHC 13 TeV				
$H \rightarrow \phi \gamma \rightarrow K^+ K^- \gamma$	SATLAS JHEP 07(2018) 127			
$H \rightarrow \rho \gamma \rightarrow \pi^+ \pi^- \gamma$	SATLAS JHEP 07(2018) 127			
$H {\longrightarrow} \psi / \Upsilon \gamma {\longrightarrow} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \gamma$	Satlas arXiv:1807.00802	CMS-SMP-17-012		

Probing the Higgs coupling with light and c quarks!

- Complementary to direct $H \rightarrow c\bar{c}$ searches
- The LHC direct limit on $\sigma_{ZH} \times B(H \rightarrow c\bar{c})$ is ~100×SM

	$H \rightarrow M\gamma$ at LHC 13 Te	V
$H \rightarrow \phi \gamma \rightarrow K^+ K^- \gamma$	EXPERIMENT JHEP 07(2018) 127	
$H \rightarrow \rho \gamma \rightarrow \pi^+ \pi^- \gamma$	SATLAS JHEP 07(2018) 127	
$H {\rightarrow} \psi / \Upsilon \gamma {\rightarrow} \mu^{+} \mu^{-} \gamma$	SATLAS arXiv:1807.00802	CMS-SMP-17-012

- Signal extraction: 2D fit of m_{uuv} and m_{uuv}
- Signal model: parametric, from simulation
- Background model: non-parametric from data $M\gamma$ candidates in data with looser isolation and $p_{T}^{\mu\mu}$

Higgs decay to J/Yy

Decay	Category	Data	Signal	Background
	Production		·	Peaking!
	ggF		7.1×10^{-2}	0.2
	VBF		$3.5 imes 10^{-3}$	$9.4 imes10^{-3}$
${ m H} ightarrow { m J}/\psi ~\gamma$	ZH	279	$7.1 imes 10^{-4}$	$2.3 imes10^{-3}$
	W^+H		$6.0 imes10^{-4}$	$1.0 imes 10^{-3}$
	W^-H		$4.5 imes10^{-4}$	$1.3 imes10^{-3}$
	ttH		$2.7 imes 10^{-4}$	$1.3 imes10^{-3}$

SMP-17-012

- Signal extraction: bump-hunt over $m_{\mu\mu\gamma}$
- Signal model: parametric, from simulation
- Background model: parametric from data
 - Negligible bias from the model choice

Signal peak overwhelmed by $H \rightarrow \ell \ell \gamma !!$

Branching fraction limit (95% CL)	Expected	Observed	
$\mathcal{B}(H o J/\psi \gamma) [10^{-4}]$ SM: 10 ⁻⁶	$3.0^{+1.4}_{-0.8}$	3.5	
$\mathcal{B}\left(H \to \psi\left(2S\right)\gamma\right)\left[10^{-4}\right]$	$15.6^{+7.7}_{-4.4}$	19.8	The fire
$\mathcal{B}(H \to \Upsilon(1S)\gamma) [10^{-4}]$ SM: 10 ⁻⁹	$5.0^{+2.4}_{-1.4}$	4.9	urst res
$\mathcal{B}\left(H \to \Upsilon(2S) \gamma\right) \left[\ 10^{-4} \ \right]$	$6.2^{+3.0}_{-1.7}$	5.9	
$\mathcal{B}\left(H \to \Upsilon(3S) \gamma\right) \left[\ 10^{-4} \ \right]$	$5.0^{+2.5}_{-1.4}$	5.7	

Observed (expected) upper limits at 95% CL

Channel	$\sigma(fb)$ *	${\cal B}({ m H}~ ightarrow{ m J}/\psi~\gamma)$	$\frac{\mathcal{B}(Z(H) \rightarrow J/\psi \gamma)}{\mathcal{B}_{SM}(Z(H) \rightarrow J/\psi \gamma)}$
${ m H} ightarrow { m J}/\psi ~\gamma$	$2.5\;(1.7^{+0.8}_{-0.5})$	$7.6~(5.2^{+2.4}_{-1.6})\times10^{4}$	260 (170)
*: $\sigma(pp \rightarrow F)$	$\mathrm{H}(\mathrm{Z}) ightarrow (\mathrm{J}/\psi ightarrow \mu)$	$(\mu\mu)\gamma) (fb)$	

Similar approaches in the two experiments

- Event categorization based on signal purity and $m_{\ell\ell\gamma}$ resolution
- Bump-hunting over the $m_{\ell\ell\gamma}$ spectrum
 - Parametric models for signal peak
 - Parametric model for backgrounds from data

Combined obs (exp) UL on $\sigma \times B(H \rightarrow \ell \ell \gamma)$ 3.9 (2.9) × SM Observed (expected) UL on $\sigma \times B(H \rightarrow Z\gamma)$ 6.6 (5.2) × SM

INVISIBLE HIGGS

Higgs Decay to invisible

• In SM only possible via Higgs decay to Z bosons

 $B(H \rightarrow ZZ \rightarrow Inv.) \le 10^{-4}$

- Current limits leave room for possible BSM effects in Higgs decay to invisible
- All Higgs production mechanisms can be exploited!

Higgs decay to invisible

Two different signatures with large E_T^{miss} :

- Z→{{
- Boosted $V \rightarrow qq'$

Large E_{T}^{miss} and 2 VBF jets

Monojet analysis with large E_T^{miss}
No overlap with VH or VBF

Eur. Phys. J. C 78 (2018) 291 Phys. Rev. D 97, 092005 (2018) Phys. Lett. B 776 (2017) 318

CMS-HIG-17-023

Phys. Rev. D 97, 092005 (2018)

Higgs decay to invisible

$Z \rightarrow \ell \ell$: fit to BDT against WZ/ZZ

Major backgrounds from data

Fit to m_{ii} distribution

Major backgrounds from data

Fit to E_{T}^{miss}

Major backgrounds from data

Results and combination

CMS

Observed (expected) upper limits at 95% CL:

- Competitive with the results of Higgs coupling measurements
- Still much larger than the SM prediction!

Higgs decay to invisible

Similar search from ATLAS in VH

Fit to E_T^{miss} distribution

	Obs. $B_{H \rightarrow inv}$ Limit	Exp. $B_{H \to \text{inv}}$ Limit $\pm 1\sigma \pm 2\sigma$
ee	59%	$(51 \ ^{+21}_{-15} \ ^{+49}_{-24}) \ \%$
$\mu\mu$	97%	$(48 {}^{+20}_{-14} {}^{+46}_{-22}) \%$
$ee + \mu\mu$	67%	$(39 {}^{+17}_{-11} {}^{+38}_{-18}) \%$

Combined limit at 95% CL $B(H\rightarrow inv) < 67\%$

HIGGS ANOMALOUS INTERACTIONS

FCNC and **inverted** top-H coupling

 σ_{tHq} sensitive to amplitude, relative sign & phase of y_t and g_{HVV} .

к: ratio of the coupling to SM

28

Inverted top-H coupling: tHq search

CMS-HIG-18-009

Three analysis are combined

 $H \rightarrow b\overline{b}$ (HIG-17-016)

- Dedicated analysis
 - Signal: $\kappa_t = -1$
 - Simultaneous fit to BDT in various regions

$\begin{array}{l} Multi-lepton \ H {\rightarrow} \ WW/ZZ/\tau\tau \\ (HIG-17-005) \end{array}$

- Dedicated analysis
 - Signal: $\kappa_t = -1$
 - Two BDT's merged $(t\bar{t}V,t\bar{t})$
 - Fit to merged BDT

H→ γγ (arXiv:1804.02716)

CMS Sin	ulation H→γγ 35.9 fb⁻¹(13 TeV)
	ggH 📕 VBF 📕 tṫH 📕 bbH 📕 tHq 📕 tHW
	WH leptonic ZH leptonic WH hadronic ZH hadronic
Untagged 0	. 32.5 expected events
Untagged 1	. 469.3 expected events
Untagged 2	678.3 expected events
Untagged 3	624.3 expected events
VBF 0	9.3 expected events
VBF 1	8.0 expected events
VBF 2	25.2 expected events
ttH Hadronic	5.6 expected events
ttH Leptonic	3.8 expected events
ZH Leptonic	0.5 expected events
WH Leptonic	3.6 expected events
VH LeptonicLoose	2.7 expected events
VH Hadronic	7.9 expected events
VH MET	4.0 expected events
	10 20 30 40 50 60 70 80 90 100 Signal fraction (%)

- ttH categories from $H \rightarrow \gamma \gamma$ measurement
- Signal efficiency and acceptance evaluated for κ_t = -1

Inverted top-H coupling: tHq search

CMS-HIG-18-009

Inverted coupling is not entirely excluded!

- Data constrain y_t to within [-0.9, -0.5] and [1.0, 2.1] times y_t^{SM}
- Slightly favor positive sign of y_t at about 1.5 σ

HIGGS EXOTIC DECAYS

• Well motivated in the framework of NMSSM, 2HDM+S, ...

- Handful of analyses in LHC Run I!
- Also plenty of results at 13 TeV

A pseudoscalar, interacts with fermions via mixing with Higgs

One of the light CP-even Higgs in the model identified as h(125)

Explored final states at LHC 13 TeV				
$H \rightarrow aa \rightarrow 4\ell$	EXPERIMENT JHEP 06 (2018) 166,	CMS CMS-HIG-18-003, arXiv:1805.04865 (Acc. JHEP)		
H→aa→bbℓℓ	SATLAS arXiv:1807.00539,	arXiv:1805.10191 (Acc. PLB)		
$H \rightarrow aa \rightarrow 4b$	Satlas arXiv:1806.07355			
Н→аа→ддүү	EXPERIMENT PLB 782 (2018) 750			

Explored final states at LHC 13 TeV				
$H \rightarrow aa \rightarrow 4\ell$	EXPERIMENT JHEP 06 (2018) 166,	CMS-HIG-18-003, arXiv:1805.04865(Acc JHEP)		
H→aa→bbℓℓ	Satlas arXiv:1807.00539,	CMS arXiv:1805.10191 (Acc. PLB)		
$H \rightarrow aa \rightarrow 4b$	SATLAS arXiv:1806.07355			
Н→аа→ggүү	SATLAS PLB 782 (2018) 750			

- Model-independent search in mass range of 0.25 8.5 GeV
- Only rely on muon pairing! ightarrow

• Benchmark models: NMSSM & Dark SUSY

90 GeV < m(h₁₂) < 150 GeV 0.25 GeV < m(a1) < 3.55 GeV

 $0.25 < m(\gamma_{\rm D}) < 8.5 \text{ GeV}$ $m_{n1} = 10 \text{ GeV}, m_{nD} = 1 \text{ GeV},$ $0 \text{ mm} < c\tau(\gamma_D) < 100 \text{ mm}$

Backgrounds

AND SOUCH

SPS

 γ/Z

 γ/Z

 0.36 ± 0.09

 0.33 ± 0.08

 q_1

 q_1

 q_1

From data

From MC

 μ^+

 μ^{-}

$H \rightarrow aa \rightarrow 4b$ (VH)

Data

----- ZH (×40)

tt + light

tt + cc

tī + bb

Z+iets

Other

0.2 04 0.6 0.8

Events

Data / Pred.

0.75

0.5

-1

-0.8 -0.6 -0.4 -0.2 0

0.2 0.4 0.6

BDT (4j, 4b, m = 50 GeV)

0.8

- Categories in number of leptons, jets and b-jets \bullet
- BDT trained in SR, other discriminative variables in CR •
- Simultaneous fit of all regions

0.75

100 200 300 400 500 600 700 800

m_{bbbb} [GeV]

 $\cos(\theta^{*})$

$H \rightarrow aa \rightarrow \tau \tau bb$ (all)

- The final states of $\tau_{h}\tau_{\ell}$ and $\tau_{e}\tau_{u}$ are considered
- Categorization based on $m_{b\tau\tau}$, threshold depends on the final state

μτ

100

120

m^{vis}_{bττ} (GeV)

80

Simultaneous fit to $m_{b\tau\tau}$ in all categories

$H \rightarrow aa \rightarrow \gamma\gamma jj (VBF)$

$H \rightarrow aa \text{ with } m_a > 20 \text{ GeV}$

 $2\% < B(H \rightarrow BSM) < 8\%$

Best B(H \rightarrow BSM) < 45%

 $4\% < B(H \rightarrow BSM) < 16\%$

Sensitivity degrades in $m_a < 20 \text{ GeV}$

40

Summary

LHC Higgs measurements has entered the precision era!
 → Many Higgs properties are measured and challenging Higgs processes are discovered

Small deviations from SM might be probed in Higgs differential and properties measurements

Rare signatures might be the key for future discoveries
Direct searches provide complementarity to capture new physics effects!

ATLAS and CMS have a rich program to exploit the BSM discovery potential of the Higgs bosonAlready a handful of results, no significant sign of BSM yet!

BACKUP

$H \rightarrow bb$

- VH: $W \rightarrow \ell v$, $Z \rightarrow \ell \ell / v v$
- Dedicated b-jet energy calibration

Table 1: Summary of the event selection and categorisation in the 0-, 1- and 2-lepton channels.				
Selection	0-lepton	1-lepton		2-lepton
		e sub-channel	μ sub-channel	
Trigger	$E_{ m T}^{ m miss}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton
Leptons	0 loose leptons	1 tight electron	1 tight muon	$2 \ loose \ leptons \ with \ p_{\rm T} > 7 \ {\rm GeV}$
	with $p_{\rm T} > 7 {\rm ~GeV}$	$p_{\rm T} > 27 { m ~GeV}$	$p_{\rm T} > 25 { m ~GeV}$	\geq 1 lepton with $p_{\rm T}$ > 27 GeV
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 150 GeV	> 30 GeV	-	-
$m_{\ell\ell}$	—		-	$81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$
Jets	Exactly 2 /	Exactly 3 jets		Exactly $2 / \ge 3$ jets
Jet $p_{\rm T}$	> 20 GeV for $ \eta < 2.5$ and > 30 GeV for $2.5 < \eta < 4.5$			
<i>b</i> -jets	Exactly 2 <i>b</i> -tagged jets			
Leading <i>b</i> -tagged jet $p_{\rm T}$	> 45 GeV			
H_{T}	> 120 (2 jets), >150 GeV (3 jets)		-	-
$\min[\Delta \phi(\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$	-		_
$\Delta \phi(\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}, \boldsymbol{b} \boldsymbol{b})$	> 120°	_		-
$\Delta \phi(\boldsymbol{b}_1, \boldsymbol{b}_2)$	< 140°		-	-
$\Delta \phi(\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}, \boldsymbol{E}_{\mathrm{T,trk}}^{\mathrm{miss}})$	< 90°	-		—
$p_{\rm T}^V$ regions	> 150 GeV			75 GeV < $p_{\rm T}^V$ < 150 GeV, > 150 GeV
Signal regions	_	$m_{bb} \ge 75 \text{ GeV or } m_{top} \le 225 \text{ GeV}$		Same-flavour leptons
			-	Opposite-sign charges ($\mu\mu$ sub-channel)
Control regions	-	m_{bb} < 75 GeV and m_{top} > 225 GeV		m _{bb} / Different-flavour leptons
		yield		yield Opposite-sign charges

- Backgrounds from the fit in all categories
 - ℓv : QCD bkg. from data using m_T^W fit (< 3% of total bkg).
- Dominant systematics: b-jet, jet and theory modeling
- Observed (expected) significance $H \rightarrow bb$:
 - This analysis: 4.9σ (4.3σ)
 - Combination with other production modes in Run I & Run II: 5.4σ (5.5σ)
- Observation of VH in Run II: 5.3σ (4.8 σ)

Two analysis:
1) BDT trained in SR's: ZH for signal extraction, ZZ for validation
2) Dijet mass analysis, using add. sel.

	Ch	annel			
Selection	0-lepton	1-lepton	2-lepton		
m_{T}^W	-	< 120 GeV	-		
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$	-	-	$< 3.5\sqrt{\text{GeV}}$		
	$p_{\rm T}^V$ regions				
p_{T}^{V}	(75, 150] GeV (2-lepton only)	(150, 200] GeV	> 200 GeV		
$\Delta R(\boldsymbol{b}_1, \boldsymbol{b}_2)$	<3.0	<1.8	<1.2		

$H \rightarrow bb$

- VH: $W \rightarrow \ell v, Z \rightarrow \ell \ell / \upsilon v$
- Similar categorization to ATLAS with slightly different cuts and topological requirements

 \rightarrow e.g. dedicated b-jet energy regression per lepton category (10–13% m_{ii} resolution)

All production modes

- Two analyses:
 - Dijet mass
 - DNN (deep neural network)
 - Signal region: ZH for signal extraction, ZZ for validation
 - Control regions for tt (yield), Z+LF (yield), Z+HF (HFDNN, deepCSV in $\ell\ell$)
- Dominant systematics: b-jets, jets, theory modeling

Significance		
Expected	Observed	Signal strength
1.9	1.3	0.73 ± 0.65
1.8	2.6	1.32 ± 0.55
1.9	1.9	1.05 ± 0.59
3.1	3.3	1.08 ± 0.34
4.2	4.4	1.06 ± 0.26
4.9	4.8	1.01 ± 0.23
	Signif Expected 1.9 1.8 1.9 3.1 4.2 4.9	SigniFcance Expected Observed 1.9 1.3 1.8 2.6 1.9 1.9 3.1 3.3 4.2 4.4 4.9 4.8

Observed (expected) significance $H \rightarrow bb$

5.6σ (5.5σ)

$H \rightarrow bb$

ttH

 6.3σ (5.1 σ) Observed (expected) significance combining channels in Run I + Run II

Combination

Analysis	Integrated luminosity (fb ⁻¹)
$H \to \gamma \gamma \text{ (including } t\bar{t}H, H \to \gamma \gamma)$	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell)$	79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
$H \rightarrow \tau \tau$	36.1
$VH, H \rightarrow b\bar{b}$	36.1
$H \rightarrow \mu \mu$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1

- Using κ framework for the coupling fit.
- $B(H \rightarrow BSM)$:
 - Invisible and undetected final states
 - Undetectable by ATLAS
 - Not covered by the analyses presented here
 - → Modifications to the branching fractions of channels not yet been directly measured e.g., $H \rightarrow c \bar{c}$
- No BSM is assumed in "coupling-mass" fit

Combination

- Using κ framework for the coupling fit.
- $B(H \rightarrow BSM) \sim B(H \rightarrow Inv.) \& B(H \rightarrow Undet.)$:
 - $B_{undet.}$ represents the total branching ratio to any final state which is not detected by the channels included in this combined analysis.
- No BSM is assumed in "coupling-mass" fit

H→μμ

Index	BDT quantile	Max. muon $ \eta $	ggH	VBF	WH	ZH	ttH	Signal	Bkg./GeV	FWHM	Bkg. functional	S/\sqrt{B}
			[%]	[%]	[%]	[%]	[%]		@125GeV	[GeV]	fit form	@ FWHM
0	0 - 8%	$ \eta < 2.4$	4.9	1.3	3.3	6.3	31.9	21.2	3150.5	4.2	mBW ·B _{deg4}	0.12
1	8-39%	$1.9 < \eta < 2.4$	5.6	1.7	3.9	3.5	1.3	22.3	1327.5	7.3	mBW $\cdot B_{deg4}$	0.16
2	8-39%	$0.9 < \eta < 1.9$	10.3	2.8	6.5	6.4	5.2	41.1	2222.2	4.1	mBW $\cdot B_{deg4}$	0.29
3	8-39%	$ \eta < 0.9$	3.2	0.8	1.9	2.1	3.5	12.7	775.9	2.9	mBW $\cdot B_{deg4}$	0.17
4	39 - 61%	$1.9 < \eta < 2.4$	2.9	1.7	2.7	2.7	0.3	11.8	435.0	7.0	mBW $\cdot B_{deg4}$	0.14
5	39 - 61%	$0.9 < \eta < 1.9$	7.2	3.3	6.1	5.2	1.3	29.2	955.9	4.1	mBW $\cdot B_{deg4}$	0.31
6	39 - 61%	$ \eta < 0.9$	3.6	1.1	2.6	2.2	0.9	14.5	479.3	2.8	mBW $\cdot B_{deg4}$	0.26
7	61 - 76%	$1.9 < \eta < 2.4$	1.2	1.5	1.8	1.7	0.2	5.2	146.6	7.6	mBW $\cdot B_{deg4}$	0.11
8	61 - 76%	$0.9 < \eta < 1.9$	4.8	3.6	4.5	4.4	0.7	20.3	514.3	4.2	mBW $\cdot B_{deg4}$	0.29
9	61 - 76%	$ \eta < 0.9$	3.2	1.6	2.3	2.1	0.6	13.1	319.7	3.0	mBW	0.28
10	76 - 91%	$1.9 < \eta < 2.4$	1.2	3.1	2.2	2.1	0.2	5.8	102.4	7.2	Sum Exp(n=2)	0.14
11	76 - 91%	$0.9 < \eta < 1.9$	4.4	8.7	6.2	6.0	1.1	20.3	363.3	4.2	mBW	0.34
12	76 - 91%	$ \eta < 0.9$	3.1	4.0	3.8	3.6	0.9	13.7	230.0	3.2	mBW $\cdot B_{deg4}$	0.34
13	91 - 95%	$ \eta < 2.4$	1.7	6.4	2.5	2.6	0.5	8.6	95.5	4.0	mBW	0.28
14	95 - 100%	$ \eta < 2.4$	2.0	19.4	1.5	1.4	0.7	13.7	82.4	4.2	mBW	0.47
overall			59.1	61.1	51.8	52.3	49.2	253.3	12961.5	3.9		

H→μμ

H→ℓlγ

Higgs decay to invisible

Backgrounds

- ZZ taken from simulation, including uncertainties (10%)
 - Not enough statistics in 4ℓ data control region
- WZ scaled by a data-driven factor, 1.29, from a 3ℓ control region
- Z+jets from data using the so-called ABCD method based on E_T^{miss} and the event topology
- Non-resonant- $\ell\ell$ from eµ data

- Two m_{uu} templates:
 - Dimuon with or w/o high- p_T muon
- $S(\mu\mu_1,\mu\mu_2) = \alpha \cdot S(\mu\mu_{hp}) \times S(\mu\mu_{hp}) + (1-\alpha) \cdot S(\mu\mu_{hp}) \times S(\mu\mu_{hp})$
 - → Normalized
 - A_{D}/A_{OD} used to interpolate from all range into corridor

- Selected using B-physics trigger, ==2 dimuons •
- Random muon pairing, each compatible with J/ψ mass
- The non-prompt contribution is subtracted (ABCD method for $I_{\mu\nu}$'s)
- SPS and DPS cont. estimated with template fit of $\Delta y_{\mu\mu1,\mu\mu2}$
- The data/MC is applied on MC in signal region

 q_1

 q_1

 γ/Z

 0.36 ± 0.09

From data

 μ

Inverted top-H coupling: tHq search

CMS-HIG-18-009

Three analysis are combined

 $H \rightarrow b\overline{b}$ (HIG-17-016)

- Signal: $\kappa_t = -1$
- Leptonic top decay
- Categories: 3 & 4 b-jets
- BDT's for jet assignments
- BDT's against backgrounds
 - Simultaneous fit in all regions

$\begin{array}{l} Multi-lepton \ H \rightarrow WW/ZZ/\tau\tau \\ (HIG-17-005) \end{array}$

- Signal: $\kappa_t = -1$
- 3ℓ and same-sign 2ℓ
- BDT trained against $t\bar{t}V$
- BDT trained against tt
- Merged in one BDT with optimized binning

H→ γγ (arXiv:1804.02716)

CMS Simulation H→γγ 35.9 fb ⁻¹ (13 TeV								
	ggH 📕 VBF 🔤 tīH 📕 bbH 📕 tHq 📕 tHW							
	WH leptonic ZH leptonic WH hadronic ZH hadronic							
Untagged 0	32.5 expected events							
Untagged 1	469.3 expected events							
Untagged 2	678.3 expected events							
Untagged 3	624.3 expected events							
VBF 0	9.3 expected events							
VBF 1	8.0 expected events							
VBF 2	25.2 expected events							
ttH Hadronic	5.6 expected events							
ttH Leptonic	3.8 expected events							
ZH Leptonic	0.5 expected events							
WH Leptonic	3.6 expected events							
VH LeptonicLoose	2.7 expected events							
VH Hadronic	7.9 expected events							
VH MET	4.0 expected events							
	10 20 30 40 50 60 70 80 90 100 Signal fraction (%)							

- ttH categories from $H \rightarrow \gamma \gamma$ measurement
- Signal efficiency and acceptance evaluated for *κ*_t = -1

Lepton Flavor Violating Higgs decays

JHEP 06 (2018) 001

- ggH and VBF productions
- Lepton selection
- Categories: number of jets (0,1,2) and m_{ii}
- BDT trained in all categories
- Bkgs from/corrected with data

Lepton Flavor Violating Higgs decays

