

PRISMA

Accelerator-based Light Particle Searches

NA62 A

at NA62 Experiment

Gia Khoriauli

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

On behalf of the NA62 Collaboration

XII International Conference on Interconnections between Particle Physics and Cosmology

20 – 24 August 2018, Zürich

NA62 Collaboration

NA62 COLLABORATION

29 institutes, ≤200 members

NA62 Experiments

France

Fixed-target experiments at CERN North Area

400 GeV/c proton beam

Switzerland

JGU

Secondary K⁺ decaying in-flight

Proton beam dump ~10¹⁸ POT / year

10 2:3 N 74 75 72

Geneva airport

Physics data taking started in 2015
 ~10¹³ recorded K⁺ decays until 2018

NA62 Primary Task

NA62 as a Multipurpose Tool

Photon (A'), Dark Scalar (S)

Dedicated NA62 studies reviewed in this talk

Studies with K⁺ beam

JGU

- Invisible HNL production from K⁺ decays in the detector fiducial volume (published)
- $_{\odot}$ Invisible decays of A' produced in $\pi^{\,\rm 0}\,{\rm decays}$ in the fiducial volume, (preliminary)

Studies with beam dump, only sensitivity estimations

 Visible decays of HNL, A', S and ALPs produced at the target in the fiducial volume

NA62 Detector

Detector hall + target hall ≈ 270 m

NA62 Detector & K⁺ Beam

□ K⁺ secondary beam from the target

 \Rightarrow p = 75 GeV/c ±1% selection with a magnet achromat \circ K⁺ only 6% of the secondary beam (pions, protons, etc.)

NA62 Detector & Primary Beam Dump

Primary 400 GeV/c proton beam dump on movable secondary beam collimators, TAXes

◆ (Remember SHiP's plan of 2 x 10²⁰ POT (5 years))

JGU

Studies with K⁺ Beam

HNL SEARCH Production

Heavy Neutral Leptons

Asaka, Shaposhnikov, PLB 620 (2005) 17

□ Neutrino Minimal SM extension, vMSM

- \Box 3 RH neutrinos: N₁, N₂, N₃
- □ Light N₁, m ~ 10 KeV
 ♦ dark matter candidate

$$\Box$$
 Heavy N₂, N₃ , m ~ 100 MeV – GeV

- Generation of SM neutrino masses (see-saw)
- Introduction of extra CPV phases to explain baryon asymmetry trough leptogenesis

 □ HNL can be produced in meson decays → NA62 sensitivity in both K⁺ and beam dump modes

JGU

 \Box If $m_{HNL} < m_{K^+}$, then HNL can be produced in K^+ decays

□ Expected very weak coupling of HNL with SM ◆ e.g. $|U_{|4}|^2 < 10^{.4} \rightarrow$ HNL mean free path >10 km \rightarrow invisible $\circ m_{HNL} < 500 \text{ MeV/c}^2$

Search for spikes in missing mass spectrum in events with single lepton tracks from K⁺ decays

□ Analysis of $K^+ \rightarrow \mu^+ N$ and $K^+ \rightarrow e^+ N$ used minimum bias data collected in 2015 at very low primary beam intensity (1% of nominal)

- ~10⁸ K⁺ decays in the NA62 fiducial volume in each positron and muon data samples
- □ Beam tracker (GTK) was not available by that time → using averaged Kaon momentum
 - ◆ Mass resolution studied in MC ■
- Good mass resolution is very important
 - Amount of background in selected mass window

JGU

Possible HNL mass splitting

- m²_{miss} distribution after final selection of positron sample
- Mass window for each mass hypothesis of HNL: |m - m_{HNL} |<1.5σ(m_{HNL})
- Scan of HNL mass hypothesis in 1 MeV/c² steps

- Convert observed and expected background events in a mass window into an upper limit on the signal
 - Expected background is calculated from polynomial fit of sidebands of the mass window

□ No more than 2.2σ excess of observed upper limit over the expected one for $|U_{14}|^2$

Studies with Beam Dump

HNL SEARCH Visible Decays

NA62 Sensitivity to HNL

□ Neutrino portal to dark sector

 $\mathcal{L}_{\text{vector}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} + \sum F_{\alpha I} (\bar{L}_{\alpha} H) N_I$

 $\Box L_{\text{DS}} \text{ can include mass terms for one or more HNLs}$ $\diamond Diagonalising mass matrix \rightarrow mixing of neuronal state <math>\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} + \sum F_{\alpha I}(\bar{L} + \mathcal{L}_{\text{DS}}) + \sum F_{\alpha I$

 \square Sensitivity to three different mixing/coupling scenarios, $U_e{}^2:U_\mu{}^2:U_\tau{}^2$ is studied in the beam dump mode

◆ Long lived HNL, decays into 2-track final states

NA62 Sensitivity to HNL

□ Long-lived HNL decaying into 2 charged particles

- ◆ Assuming 10¹⁸ POT (~1 data taking year of NA62)
- Reconstruction of all 2-track final states from HNL decays
- Geometrical acceptance and trigger efficiencies
- ◆ 0 background assumption (proved with 10¹⁵ POT data)

◆ Limits @ 90% CL

Studies with K⁺ Beam

DARK PHOTON SEARCH Invisible Decays

Dark Photon

JG

B. Holdom, Phys. Lett. B 166 (1986) 196

Extra U(1) gauge symmetry connected with the SM U(1) via kinetic mixing of their gauge fields

- Extra U(1) gauge boson A' (Dark Photon) with a non-zero mass
- ϵ mixing and $m_{A'}$ mass are the theory free parameters

$$\mathcal{L}_{\text{vector}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B_{\mu\nu} \frac{\mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B_{\mu\nu}}{\mathcal{L}_{\text{DS}} - \frac{1}{4} (F'_{\mu\nu})^2 + \frac{1}{2}n} \mathbf{A}^{\prime} \mathbf{A}^{\prime$$

□ Dark photon can couple (OED-like) with the SM fermions and the $c^{\mathcal{L}_{vector} = \mathcal{L}_{SM} + \mathcal{L}_{DS} - \frac{1}{2\cos\theta_W}F'_{\mu\nu}B_{\mu\nu}}$ $\mathcal{L} \sim g'q_f\bar{\psi}\mathcal{L}_{DS} = -\frac{1}{4}(F'_{\mu\nu})^2 + \frac{1}{2}m_{A'}^2(A'_{\mu})^2 + |(\partial_{\mu} + ig_DA'_{\mu})\chi|^2 +$ □ Can be searched at NA62 into visible and invisible decays (K⁺ beam mode)

- Production: $K^+ \rightarrow \pi^+ A'$ or $K^+ \rightarrow \pi^+ (\pi^0 \rightarrow \chi)$
- Decay: A' $\rightarrow \mu^+\mu^-$, e⁺e⁻ or A' $\rightarrow \chi\chi$ (invision)

NA62 Study of $\pi^0 \rightarrow \gamma(A' \rightarrow \chi\chi)$

 \Box Large sample of $K^+ \rightarrow \pi^+ \pi^0$

- Control sample for $K^+ \rightarrow \pi^+ v \overline{v}$ analysis
- Search for decay chain: $\pi^0 \rightarrow \gamma A'$ and $A' \rightarrow \chi \chi$ (invisible)

♦ m_{A'}<m_{π0}

NA62 Study of $\pi^0 \rightarrow \gamma(A' \rightarrow \chi\chi)$

□ No significant excess of events observed → improved limits at 90% CL (preliminary)

- A' mass range: ~ 50 MeV/c² < $m_{A'}$ < 90 MeV/c²
- Only small fraction of data 2016 is used, 1.5×10^{10} K⁺ decays

□ Analysis with full 2016 data set is on-going

Studies with Beam Dump

DARK PHOTON SEARCH Visible Decays

NA62 Sensitivity to A' \rightarrow µ⁺µ⁻, e⁺e⁻

- □ Production of A' directly at the Beryllium target
 - Secondary meson decays: e.g. $pN \rightarrow X(\pi^0 \rightarrow \gamma A')$
 - Bremsstrahlung off primary beam: pN -> XA'
 - ♦ A' production in QCD processes is not included in MC
- □ Reconstruction of displaced decay vertices of A' \rightarrow e⁺e⁻, A' \rightarrow µ⁺µ⁻ in the fiducial volume pointing back to target
- Sensitivity estimated assuming 10^{18} protons on target and 0 background P_{tot}

□ Data sets from 2016/2017 runs for dedicated analysis

◆ 3x10¹⁷ POT with di-muon trigger

JGU

◆ 5x10¹⁶ POT with di-electron trigger

NA62 Sensitivity to A' \rightarrow µ⁺µ⁻, e⁺e⁻

□ Model of A' coupling with only the SM is considered

Higher sensitivity expected with beam dump on TAXes
 Enhanced meson production, less background, etc

Studies with Beam Dump

DARK SCALAR SEARCH

Dark Scalar

NA62 Sensitivity to Dark Scalar

- MC simulation of single S production in meson decays
- □ Sensitivity estimate assuming 10¹⁸ POT (~1 year of data taking at NA62 with beam dump mode)
- □ Reconstruction of all 2track final states of S decay
 - 🔶 ee, μμ, ππ, KK
 - Reconstructed vertex pointing back to TAXes
 - Acceptance included
 - 0 background assumed

Studies with Beam Dump

ALPs SEARCH

Axion-Like Particles

JGL

Light ALPs can serve as dark matter candidates and mediators between SM and dark sectors

$$\mathcal{L}_{\text{axion}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} + \frac{a}{4f_{\gamma}}F_{\mu\nu}\tilde{F}_{\mu\nu} + \frac{a}{4f_{G}}\text{Tr}G_{\mu\nu}\tilde{G}_{\mu\nu} + \frac{\partial_{\mu}a}{f_{l}}\sum_{\alpha}\bar{l}_{\alpha}\gamma_{\mu}\gamma_{5}l_{\alpha} + \frac{\partial_{\mu}a}{f_{q}}\sum_{\beta}\bar{q}_{\beta}\gamma_{\mu}\gamma_{5}q_{\beta}$$

- Sensitivity to long-lived ALPs produced in beam dump mode is studied
 - Assuming dominant interaction of ALPs with SM photons

ALPs produced only in photon fusion (Primakoff production) are simulated

NA62 Sensitivity to ALPs

- □ Sensitivity is estimated assuming 10¹⁸ POT at TAXes
 - 1 day data (~10¹⁶ POT) is already enough to obtain significant results
- ALPs decaying into two photons in the fiducial volume are simulated
 - Both photons are in the acceptance of LKr (el.mag. calorimeter)
 - 0 background assumed

□ Estimate limits @ 90% CL

□ Analysis with 5x10¹⁵ POT data (2017) is on-going

NA62 Present & Future: Run 2 & 3

 \Box Run 2: K⁺ beam for K⁺ $\rightarrow \pi^+ \sqrt{\nu}$, dark photon, HNL, LNV/LFV decays, etc.

- Run 3: many interesting fields to be studied with minimal (or no upgrades at all) of the existing setup
 - ♦ In K⁺ beam mode:
 - o If needed improve $K^+ \rightarrow \pi^+ \sqrt{\nu}$, A' \rightarrow invisible, invisible HNL
 - All benefit from the same trigger signature
 - roton beam dump mode:
 - ALPs, Dark scalar, A', HNL : all in visible decays

2021	2022	2023	2024
	Run 3		
			NA stop

□ 1 year of data taking in beam dump mode during Run 3 is under consideration JGU

Summary

- □ NA62 experiment at CERN to measure K⁺ rare (BR ~10⁻¹⁰) decay K⁺ $\rightarrow \pi^+ v \overline{v}$: very promising first result
- □ High energy & intensity proton beam + long decay volume & advanced detector system → NA62 as a very powerful tool to search for hidden sector light particles
 - ◆ Dark Photon, Dark Scalar, ALPs, HNL
 - ◆ MeV to GeV mass range, weak coupling with the SM
 - Visible and invisible decays
- □ Operation in K⁺ beam or proton beam dump mode
 - Easy switch between the modes
 - Both considered after the long shutdown 2 (2021)
- Results (published, preliminary, MC) of various analysis of searches for particles in MeV-GeV mass scale at NA62 were presented

Kaon Identification – KTAG (CEDAR)

□ ChErenkov Differential counter with
 ▲ Chromatic Ring focus
 ♦ Filled with Nitrogen
 ♦ Time resolution ≈70 ps
 ♦ 45 MHz of total rate

 \Box Gas pressure adjusted for K⁺ selection with $p_{\rm K}$ = 75 GeV/c

Beam

Beam Spectrometer Pixel Detector

GigaTracker (GTK) consists of three stations of silicon pixel detectors and the achromat of dipole magnets

Beam Spectrometer Pixel Detector

□ 3 equal stations

- ◆ 18000 channels per station
- 0.005 X_0 per station
- Momentum resolution: 0.2%
- Angular resolution (in x-z and y-z planes): 16 µrad
- Track time resolution: 74 ps

750 MHz total rate of incident particles

STRAW Spectrometers

□ 4 equal stations

4 straw chambers per station
 X-Y and U-Y views

First time straw chambers operating in vacuum
 0.018 X₀ in total

Resolution of Spectrometers

- □ 1-track event selection
 - Good track originated from a Kaon decay in the fiducial volume
 Pion track hypothesis

Particle Identification - RICH

Particle Identification - RICH

 $\Box \sim 10^2$ muon suppression factor in a work region

→ 15 GeV/c < p_{track} < 35 GeV/c

JGU

Particle Identification – LKr & MUVs

JGU

NA62

Particle Identification - LKr

9000 litres of liquid krypton T = 120 K

 As a middle angle photon veto
 Angular coverage: 1- 8.5 mrad
 Time resolution: 300 ps
 Detection inefficiency 10⁻³ − 10⁻⁵
 Eγ = 1 − 10 GeV

□ <1% Resolution @ 20 GeV

27X₀

JGU

Particle Identification - Muon Vetos

Gia Khoriauli - Light Particle Searches at NA62 - PPC2018 Zürich 23.08.2018

NA62 🗛

Particle Identification Performance

PID	π^+ efficiency	μ^+ efficiency
Calorimeters	77%	$0.6 \cdot 10^{-5}$
RICH	80%	$2.5 \cdot 10^{-3}$

NA62

Photon Vetos

1000

Large Angle Photon Veto

- 11 stations operating in vacuum
- Angular coverage: 8.5 50 mrad
- Detection inefficiency: 10⁻⁴
 - Εγ > 200 MeV

Sensitive material: lead-glass blocks from the OPAL calorimeter

 \Box At least 21 X_0 depth for incident particles

Small Angle Photon Vetos: IRC & SAC

□ Intermediate Ring Calorimeter

□ Small Angle Calorimeter

10⁸ total π⁰ rejection together with large and middle angle photon vetos

Regions of K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$ **Selection**

Side Note

□ First result of Br(K⁺ → $\pi^+ \nu \overline{\nu}$) measurement with 2010 data

1 stranzbereich against 0.15 background events

still still $C_{\tau} = \frac{612}{12}$ $K^{t} \rightarrow K^{t} \rightarrow K^{t} \rightarrow K^{t}$ Region II $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ -**Rekonstruktion**: $K^+
ightarrow \pi^+
u ar{
u}$ -Rekou Events Observ Events Observed SES SES $(3.15\pm0.01_{
m stat}\pm$ Expected Bacl Expected Background $0.15 \stackrel{\text{K}}{=} 0.09_{\text{str}}$ $\overline{BR}(K^+ \to \pi^+ \iota \frac{1}{BR(K^+ \to \pi^+ \nu \bar{\nu})} < 11 \times 10^{-10} @ 90\% CL$ $K^+ \rightarrow \mu^+ \nu$ SM expers $BR(K^+ \rightarrow \pi^+ \iota$ $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 9 \times 10^{-10} @ 95\% \ CL$ CLBr_{SM} $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 9 \times 10^{-10}$ @ $BR(K^+ \rightarrow \pi^+)$ $BR(K^+ \rightarrow \pi^+)$ Recionezion (2 Results (publish) $BR(K^+ \to \pi^+ \nu \bar{\nu}$

 \Box Current best res $BR(K^{+})$

 $BR(K^{+} \to \pi^{+} \nu \bar{\nu} \quad BR(K^{+} \to \pi^{+} \nu \bar{\nu} \quad BR(K^{+} \to \pi^{+} \nu \bar{\nu}) < 10 \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \nu \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^{+} \bar{\nu}) = 2.8^{+4.4} \times 10^{-10} \ (M^{+} \to \pi^$

NA62

NA62 🛕

 $BR(K^+ \to \pi^+ \nu^-) \quad BR(K^+ \to \pi^+ \nu^-) \quad BR(K^+ \to \pi^+ \nu \bar{\nu}) = 2.8^{+4.4}_{-2.3} \times 10^{-10}_{-2.3} \times$

 $BR(K^+ \to \pi) \qquad BR(K^+ \to \pi) \qquad BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (0.84 \pm 0.3) \qquad BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (0.84 \pm 0.3) \qquad BR(K^+ \to \pi^- \nu \bar{\mu})_{SM} = (0.84 \pm 0.3) \qquad BR(K^+ \to \pi^- \nu \bar{\mu})_{SM} = (0.84 \pm 0.$

JGU

Number of observed events, expected background events with uncertainties and stemmed observed and expected upper limits on the signal @ 90% CL as functions of HNL mass

