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Some Pre-Standard Model Physics
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Figure:Quantum Electrodynamics (QED) illustrated in terms of Feynman
diagrams

Ca. 1965 QED was the only successful QFT
Verified to many orders in perturbation theory
Example : Inee-scattering thevirtual photon correspond to the
Coulomb potential
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Weak and strong interactions were poorly understood
theoretically. Some models existed.

Gravity, electromagnetism, Strong interactions, Newton’s laws,
Schrödinger eqs.conserve C-, P-, T-symmetries separately !
This was believed to be true in all types of interactions

Reminder:
C = charge conjugation : Particle→ Anti-particle
P = Parity(mirror) transformation:~r → −~r (~r = position vector))
For axial vector :~L = ~r ×~p→ +~L
(Remember: H-atom wave funct. has parity (-1)l)

T = Time reversal:t → − t (Remember : In quantum mechanics the
T-operator is anti-unitarian)
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First shock: (Lee and Yang 1956 : Explained experiments !)

Parity symmetry is broken in weak interaction

“θ − τ -puzzle : Decays(θ , τ ) → 2π and (θ , τ ) → 3π
Actually: θ andτ is thesame particle, theK-meson (kaon).π
andK are pseudo-scalar paprticles (0−).

Most known weak process (decay):β-decay:n → p e−νe

Lepton numberLe conserved:
L(e−) = L(νe) = +1 andL(e+) = L(νe) = −1

For massive fermions and anti-fermions: In total four degrees of
freedom. BUT: For massless fermions/anti-fermions: Two
degrees of freedom Choice: Lefthanded particles and
righthanded antiparticles, i.e(νe)L and(νe)R
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Simplest decays of pions:π+ → µ+ νµ andπ− → µ− νµ
Lepton numberLµ conserved:
L(µ−) = (νµ) = +1 andL(µ+) = (νµ) = −1

CP[π+ → µ+ (νµ)L] = C[π+ → µ+ (νµ)R]
= π− → µ− (νµ)R.
In opposite order:CP[π+ → µ+ (νµ)L] = P[π− → µ+ (νµ)L]
= π− → µ− (νµ)R.

Conclusion :In this process CP-symmetri (combinedC andP) is
apparently satisfied ? (-see blackboard ?)- Or ?

If so: This would be a symmtry between left-handed matter and
right-handed anti-matter.
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SU(3)F flavor symmetry

K0 K+

π+π− (π0, η8)

K− K0

p n
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(Σ0,Λ)

u d

s

Figure:Pseudoscalars (0−) and baryons( 1
2
−

) put in octet (8-plet)
representation ofSU(3). Making order i hadronic particles. BUT elementary
triplet (3-plet) representation (“quarks”)apparentlynot realized ?!?

Pseudoscalars:
π+ = (ud̄), π0 = (uū− uū)/

√
2, π− = (dū),K+ = (u, s̄),K0 =

(d, s̄),K− = (s, ū),K0 = (s, d̄), η8 = (uū+ dd̄ − 2s̄s)/
√

6
Baryons :p = (uud),n = (ddu),Σ+ = (uus),Σ0 =
(uds),Σ− = (dds),Λ = (uds),Ξ0 = (uss),Ξ− = (dss)
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Second shock 1964 (experiments by Fitch and Cronin)

CP-symmetry is broken in weak interaction

The neutralK-mesonsK0 andK0 are degenerate in mass. CP
eigenstates:|K± >= (|K0 > ∓ |K0 >)/

√
2, and

CP|K± >= ±|K± >.

Physical statesKS = K+ (shortlived) andKL = K− (longlived)
If CP-symmetry were fulfilled, then we should seeKS → 2π
andKL → 3π. (2π hasCP-sym = + ; while 3π may have
CP-sym = -
But this was not exact some 2 to 3 permille ofKL decayed to 2π !

Explanation.KL ≃ K− + ǫK+, with |ǫ| ≃ 2.6× 10−3.
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Trying to build a theory for weak interactions
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Figure:Some inspiration from QED?

Recall electron-electron scattering (q = momentum transfer via virtual
photon)

Ampl(ee) =
e2

q2 jµ(e) jµ(e) , jµ(e) = ψ̄ γµ ψ

Note thatjµ(e) is a pure four vector current.
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Fermi “theory”

× ?
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Figure:Fermi-diagram for beta-decay. Hypothetical extension with W

Fermi theory- a product of twoleft-handedcurrents:

LF = 4
GF√

2
j(W,N)µ j(W, l)µ , j(W)µ =

1
2
(jVµ − jAµ)

If the two currents were mediated by a heavy weak bosonW, then

g2
W

q2 − M2
W

= − 4
GF√

2
; |q2| << M2

W , GF ≃ 10−5

m2
p
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Note jAµ = ψ γµ γ5ψ, such thatj(W)µ is left-handed :

j(W)µ = ψγµ PL ψ , PL,R ≡ 1
2
(1 ∓ γ5 )

wherePL,R are the projectors in Dirac space:

(PL)
2 = PL , (PR)

2 = PR , PL ·PR = PR ·PL = 0 ,PL + PR = 1

A Dirac field can be split in two parts:

ψ = ψL + ψR , ψL = PL ψ , ψR = PRψ

ψL = left spinning (left screw)particle.
ψR = right spinning (right screw) particle.
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Note: The helicity operatorSp = (1/2) ~Σ ·~p/|~p| has the same
effect as(1/2)γ5 for massless Dirac particles.

Note that if the neutrinoνe is purely lefthanded, then the current
for νe → e− is automatically lefthanded:

j(W,e)µ = ψeγµ ψνe = ψeγµ (ψνe)L = ψeγµ PLψνe

Note thatψL = (PLψ)
†γ0 = ψPR, such that:

ψL γµ ψL = ψ γµ PLψ , ψRγµ ψR = ψ γµ PRψ , ψ ψ = ψL ψR ψRψL

We observe that symbolically

(V − A)2 = (V V + A A) − (V A + A V)

where the last term violates parity
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Trying to build a theory for strong interactions

Phenomeological models, Regge poles,...π- nucleon interactions
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Figure:Someπ-Nucleon Feynman diagrams

Interaction Lagrangian for strong interactions? -not sucessful!

LπN = GπN N̄ (τi Φi) γ5 N , N =

(

p
n

)

whereN is the nucleon doublet,Φ the pion triplet andτ the Pauli
matrices which here represents isospin.
GπN too big to make perturbative theory(expansion) valid!
Chiral perturbation theory (χPT)- (see later).
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An elektron-proton collision

Figure:Elektron-proton collision at high energy (at Stanford Linear
Accellerator Center, iCalifornia, in 1969)e p→ e Nπ

What is seen: The elektron cannot shoot loose a quark, but ameson
(q− q̄-pair). A quark cannot be free! The “color”-charge is confined !
(bound to a baryon or a meson.)
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The proton is not elementary- The parton model

e e

γ∗

Figure:Collisionep→ eX in the Parton Model

Cross setion contain the structure functionsfp(x), and depend only on
the momentumfraction of the scattered parton,- calledScaling
x ≡ ppart/pproton = (−q2)/(2Mpν), whereν = Ee − E

′

e
Intepretation of data: At high energies, the proton consistof
“sea-quarks” =quarksandanti-quarksandgluonsan addition to the
valence quarks uud.
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Picture of a proton

Figure:Quarks have “Color”. The “color”-forces bind the protonet together.
The proton has twou-type quarks and ad-type quark. Plusquantum
fluctuations-with additional (anti-)quarks and gluons- depending on the
energy

The color forces are so strong that the quarks could not come out of
the proton.
The proton (-and the neutron) are color nuetral.
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Nuclear forces stronger than electric !

Figure:Attractive nuclear forces

Two protons feels the “tail” of quark-gluon-forces, in spite of elektric
repulsion
Nuclear forces are much stronger than elektromagnetic forces
-at short distance

Jan O. Eeg Building the Standard Model



Weak int. : The birth of a symmtry

1967 Weinberg: “A model of leptons” (Similar ideas by
Glashhow and Salam)

A gauge theory ofSU(2)L × U(1)Y for two lepton families :
(

νe

e−

)

L

andeR ,

(

νµ
µ−

)

L

andµR

Wi
µ of SU(2)L andBµ of U(1)Y combines toW(±)

µ ,Zµ,Aµ.

Quark families:

(

u
d

)

L

anduR , dR ,

(

??
s

)

L

and??, sR

Cabibbo mixing:d → dθ = d cosθ + s sinθ and
s→ sθ = s cosθ − d sinθ to explain the beta-decay ofΣ0:
Σ0 → p e− νe . Hereθ = θC = Cabibbo-angle. Ratio ofΣ0 andn
beta decay amplitudes= tanθC. Exp.: sinθC ≃ 0.225
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GIM 1970: Postulate existence of fourth quakc (=charm)

Now two quark doublets:

(

u
dθ

)

L

,

(

c
sθ

)

L
and four singletsuR, (dθ)R, (sθ)R, cR

The 1974 revolution: FoundΨ-particles. Qualitative behaviour
of decay-spectrum like positroniume+ e−. Intepreted ascc̄.

After this, the quark picture was accepted among (almost) all
particle physicists

Later: three families:

(

νe

e−

)

L

,

(

νµ
µ−

)

L

,

(

ντ
τ−

)

L
(

u
dCKM

)

L

,

(

c
sCKM

)

L

,

(

t
bCKM

)

L

-plus all the right-handed singlets.
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dCKM = Vud d+ Vuss+ Vub b

sCKM = Vcd d+ Vcss+ Vcb b

bCKM = Vtd d+ Vts s+ Vtb b

where(d, s,b) are the physical quarks (with definite mass). Now
neutrinos are known to have tiny masses, which means that there is a
mixing also in the neutrino sector.

s

d̄

d

s̄

(u, c, t)

W W

s

d̄

(u, c, t)

W

W

µ−

µ+

νµ

s

d̄

W

(u, c, t)

Z

µ−

µ+
(ū, c̄, t̄)

Figure:Quark diagram forK0 → K0 determiing(mL − mS) andǫ , and
diagrams forK0 → µ+µ−. Found from these processes thatmc < 2 GeV

Decays of kaons (K-mesons) have played an important role in
understanding of the SM. Some of the elements ofVCKM are complex!

⇒ CP-violation !
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Quantum Field Theory

LQED = ψ(γµ i Dµ − m)ψ − 1
4

Fµν Fµν , i Dµ ≡ i∂µ − eAµ

ψ , ψ andAµ are field operators.
One might say that the particlese− , e+ , γ are exitations of the
fields. In QFT: the number of particles are not conserved, only
the total energy and the (electric) charge.
Particles might appear, live for a very short time and disappear,
asquantum fluctuations.

The field tensorFµν can be defines by

[i Dµ, i Dν ] = −ieFµν , Fµν = (∂µAν − ∂νAµ)
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Yang-Mills theory (1954 !) has generic form: (iDµ ≡ i∂µ − gta Aa
µ)

LYM = f γµ (iDµ − mf ) f − 1
4Fa,µν Fa

µν

The field tensor has an extra term - to obtain gauge invariance!:

[i Dµ, i Dν ] = −igtaFa
µν , Fa

µν = (∂µAa
ν − ∂νAa

µ) + g fabcAb
νAc

ν

The fieldf hasn components (i.en Dirac fields).ta are
generators (n× n-matrices) of gauge group (saySU(n))

Important: Vector bosons interact among themselves! We obtain
triple and quartic vertices.

Came “too early”. No use for it ? No known massless vector
bosons, except the photon. Y.-M. -just a mathematical exercise?

Gauge invariance is the “Guiding principle”
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Gauge transformations

Gauge transformation in QED:

ψ(x) → ψ(x)′ = eiα(x) ψ(x) , Aµ(x) → Aµ(x)
′ = Aµ(x) − 1

e
∂µα(x)

For Yang-Mills theory

f (x) → f (x)′ = U(x) f (x) ; U(x) ∈ SU(n)(−forist.)

Gauge field transf. in the non-Abelian case. Rotation among fields:
(HereA(x)µ ≡ taA(x)a

µ , ) :

Aµ → A′
µ = U Aµ U† +

i
g
(∂µU) U†,

Fµν → F′
µν = U Fµν U† ; U = U(x) = eitaαa(x)

αa(x) is a set of real functions.
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SU(2L × U(1)Y theory for first lepton doublet

χL ≡
(

νe

e−

)

L

andeR , Four gauge bosonsWi
µ , i = 1,2,3, andBµ

LEW1l = χL γ
µ

(

i∂µ − g
1
2
τ iWi

µ − 1
2

g YL Bµ

)

χL

+ eRγ
µ

(

i∂µ − 1
2

g YR Bµ

)

eR − 1
4

Wi,µν Wi
µν − 1

4
Bµν Bµν

+(sim. for the other fermions) + LHiggs + LYukawa

All particles are apparently massless- to havegauge invariance !

Masses ofW± andZ-bosons come fromLHiggs.

Fermion masses are coming fromLYukawa
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The Higgs sector

Lagrangian for the Higgs doubletφ :

LHiggs =
(

iD(φ)
α φ

)† (

iDα
(φ) φ

)

− V(φ)

V(φ) ≡ µ2
(

φ† φ
)

+ λ
(

φ† φ
)2

Couplingλ > 0. Complex Higgs doublet:

φ =

(

φ+
φ0

)

; iD(φ)
α = i∂α − g

τ k

2
Wk

α − g′

2
Yφ Bα

Forµ2 > 0 , we have a theory for spin zero particles with massµ.
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Lagrangian generating fermion masses
(

∼ m(ψRψL + ψLψR)
)

:

LYukawa = −Ge

(

χL φeR + eRφ
† χL

)

+ ....

-and extended with similar terms for all doublets...
NB! Up to now: Completely gauge symmetric Lagrangian !

Free parameters:g , g′, gs, µ
2, λ, all Ge’s in LYukawa

Later: Physical intepretation i spesific gauge !

- Via the “Higgs mechanism”

Challenge: Mass term for a vector field (Vµ) has the generic form:
LMass = m2

V Vα Vα

Such terms should appear for theW±- andZ-bosons.
Mass terms for fermions should also appear in the correct way
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Spontanous Symmetry Breaking (SSB)

Forµ2 > 0, the minimum ofV(φ) is atφ = 0 , or〈0|φ|0〉 = 0 for the
quantum case.
If µ is assumedto be imaginary, andµ2 < 0, V has minimum for a
value|φ| 6= 0, SSB (= Vac. has not full sym of dynamical eqs.) will
occurr, and the vacuum value of the fieldφ may be taken to be

〈0|φ|0〉 =
v√
2
χV ; v ≡

√

−µ2

λ
; χV ≡

(

0
1

)

This form ofχV give a massless photon.
With SSB, a tripletξj(x) of massless neutral (Goldstone) boson fields
and one massive neutral Higgs fieldH with massmH =

√

−2µ2

appear.

Jan O. Eeg Building the Standard Model



The Higgs mechanism

Goldstone triplet fieldsξi used as gauge parameters and transformed
into three linear combinations (W(±),Z) of Wk

µ andBµ to make them
massive.This very specialSU(2)L × U(1)Y gauge transformation
containing Goldstone fieldsξj :

φ → φ′ = Uξ φ =
1√
2
(v+ H) χV

This is the “Physical gauge”

H is the physical Higgs boson.
After Higgs-mechanism:
All transformed fields depend on the Goldstone fieldsξi.
The vector bosonsWi

µ get an additional longitudinal term∂µξi and
thereby obtains a mass

Jan O. Eeg Building the Standard Model



e

e
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γ,Z

γ, Z
W+

W−

Figure:Electroweak vertices we shold have and some dictated by
SU(2)L × U(1)Y gauge symmetry. There are also vertices with the Higgs
bosonH.

The couplings for the physical bosonsγ,Z,W± will be

e≡ gγ = g sinθW ,gZ =
g

cosθW
, gW =

g√
2
, tanθW =

g′

g

Partial Unification: Three couplings has become two !

Exp. : sin2θW ≃0.23. Fromαem andGF, find v ≃ 246 GeV.
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e

γ, Z

W

W

e
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Figure:Examples:ee→ f f̄ andee→ W+ W−

Masses ofW andZ-bosons (The photonγ remains massless)

MW =
1
2

g v ,MZ =
1
2

gZ v , ⇒ MZ

MW
=

1
cosθW

This relation must hold experimentally!!!(-up to higher correct.)
Gauge inv.⇒ relations between couplings, masses
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Quantum chromo dynamics (QCD)

LQCD = qγµ
(

i∂µ − gst
a Aa

µ − mq
)

q − 1
4

Fa,µν Fa
µν

The field tensor an extra term

Fa
µν = (∂µAa

ν − ∂νAa
µ) + gs f abcAb

νAc
ν

All the six quark fieldsq (q = u,d, s, c,b, t) have 3 components
(i.e 3 Dirac fields).ta are generators (3× 3-matrices) of the
gauge groupSU(3)c)
Important: Vector bosons interact among themselves! We obtain
triple and quartic vertices. The triple gluon vertex has dramatic
consequences for QCD compared to QED.
Argument for (at least) three colors: Otherwise the paricle
Ω−(sss) cannot be explained! Remember the Pauli-principle !
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gst
aγµ

Quark-quark and quark-gluon scattering

QCD is significantly different from QED due to triplet coupling

The gauge coplinggs is universal, the same for quark-gluon and
triple gluon couplings

Perturbative QCD breaks down for low energies (say 1-2 GeV).
See later.

Jan O. Eeg Building the Standard Model



Higgs-production and decay

g

g

t

t

t

H

H

t

t

t

γ

γ

Figure:Feynman diagram for Higgs production through gluon fusion.And
decay of Higgs to two photons

NB! : A proton at high energy contains gluons. Two protons collide,
and the Higgs particle appear as a collision between a gluon from
each proton
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???

s

(u, c, t)

W
d

G

ū, d̄

u, d

d̄

d̄

Figure:Example: “Penguin diagram”.Perturbative weak and strong
interactions in play. AND Non-perturbative QCD

A diagram to illustrateKL → π+π− -or 2π0. CP-violation is different
for charged and neutral pions (Theǫ′-effect) The non-perturbative
QCD part difficult...(Attacked by Lattice gauge theory).
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Quantum fluctations

e
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γ

e

e

e

e

γ γ

e

e

e

e

γ
W+

W−

γ

e

e

f̄

f

Figure:Diagrams explainingαem, which grows with energy!αem≃ 1/129
at energy =MZ. Alternative: Modification of Coulomb potential
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G

G

G

q

q
q q

q G

q

Figure:Diagrams explainingαs, which become smaller with growing
energy. The quark and the gluon loops have different signs. The gluon loop
dominates.Dramatic consequenses.
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Figure:Qualitative behaviour of effectiveαem and of effectiveαs

*Perturbative QCD breaks down at small energies! Other methods
needed. Quark models ?, Lattice gauge theory
Exp.:αs(M2

Z) ≃ 0.12 ⇒ αs((1GeV)2) ≃ 0.5(±10%) ,
αs((0.7GeV)2) ≃ 0.6 to 1.2
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Breakdown ofSU(3)L × SU(3)R - symmetry

* Chiral sym. L-R symm breaks down⇒ Goldsone bosons (π,K, η)
For light sectorq = (u,d, s) (q = qL + qR)

LQCD = qL (γ · iD) qL + qR (γ · iD) qR + mq(qL qR + qR qL) + LG

is (for mq → 0) symmetric under the unitary transf.

qL → VL qL ; qR → VR qR ; V†
L VL = V†

R VR = 1 ; V†
LVR 6= 1 .

SSB in QCD (NB. : No parity doublets!)⇒ quark condensate

〈q̄q〉 ≡ 〈0| q̄q|0〉 ≃ (−240 MeV)3 6= 0

QCD has a non-trivial vacuum!⇒ SUL(3)× SUR(3) symmetry of
QCD (for mq → 0) breaks down.
Gluon condensate textcolorred〈αs

π
G2〉 ∼ (300 to 400 MeV)4 6= 0
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Chiral perturbation theory

The meson octet (π,K, η) are Pseudo-Goldstone bosons

LχPT =
f 2
π

4
Tr[(∂µU)(∂µU†)] + ..... (1)

wherefπ is the decay constant from the decayπ → µνµ

U ≡ exp(iλa πa) (2)

Sum runs over octet (π,K, η), λa are generators forSU(3)F

One has:m2
π ∼ −〈qq〉mu,d/f 2

π ,

SU(3)F-symmetric Chiral perturbation theory (χPT)for mesons
and baryons contains a lot of terms , and isNon-renormalizable.

Chiral quark model (χQM) can be used to determine some
coefficients of terms.(χQM connects quarks to mesons)
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The SM is robust

Valid as far as we can measure

BUT: pert. QCD breaks down at low energies.
Lattice gauge theory may/should solve the problem

Gauge-symmetric theories chosen because:

Gauge theories arerenormalizable-and have a minimum of
parameters.

Various speculations beyond the SM

Thank you !
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After theSU(2)L × U(1)Y transf.Uξ has been applied: Electroweak
interactions between fermion and gauge fields should be:

(

Lint
fEW

)′
= − gγ jem

µ Aµ − gZ jZµ Zµ

− gW

(

j(+)
µ W(−)µ + j(−)

µ W(+)µ
)

Physical weak and electromagnetic currents are known (for first
generation):

jem
µ =

∑

f

Qf fγµ f = − eγµ e+
2
3

uγµ u − 1
3

dγµ d

j(+)
µ = νeγµ L e + uγµ L d

j(−)
µ = eγµ L νe + dγµ L u ;

whereL = (1− γ5)/2, and the fermion fields are understood to be
the weak eigenstatesf = fW = f ′L + f ′R.
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W± are linear combinations ofUξ transf.W :

W(±)
µ =

1√
2

(

W1
µ ± i W2

µ

)′

while gW = g/
√

2 , and the weak currents are

j(±)
µ =

(

j1µ ± i j2
µ

)′

The photonAµ andZ-boson fieldZµ are linear combination of the
transformedW3

µ andBµ bosons:

Aµ = cW B′
µ + sW (W3

µ)
′ ;

Zµ = − sW B′
µ + cW (W3

µ)
′

sW ≡ sinθW and cW ≡ cosθW , andθW = weak mixing angle
Requirement to obtain the correct electromagnetic current:

tgθW =
g′

g
; Qf = (I3

W)f +
1
2

Yf
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-consistent with

jem
µ =

(

j3µ +
1
2

jYµ

)′

The elementary electric charge (= photon coupling) will be

gγ = g sinθW

The neutral currentjZµ timesthe couplinggZ is nowcompletely
determined! One chooses

gZ = g/cosθW

jZµ = (j3µ)
′ − sin2θW jem

µ ,

(j3µ)
′ =

1
2
(νeγµ L νe − eγµ L e) +

1
2

(

uγµ L u− dγµ L d
)

,

where the fermion fields are understood to be theUξ transformed
ones,f = fW = f ′L + f ′R. Experimentallysin2θW ≃ 0.23

Jan O. Eeg Building the Standard Model


