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The units used in high energy physics:

h

2π
= c = k = 1 .

All dimensional quantities are then measured in the energy units ”MeV” (or GeV=103 MeV)

mπ
∼= 140 MeV , mp

∼= 938 MeV , T = 10− 200 MeV ,

1 fm ∼= 10−13 cm , 1 fm/c ∼= 10−23sec , 1 fm =
1

197 MeV
.
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Statistical Mechanics. Partition function = sum over all possible microstates. Microstates

are found at some special conditions. These conditions are known as the statistical ensembles.

(V,E,N) – MCE

Z(V,E,N) =
∑
states

δ[E − Es] δ[N −Ns]

(V, T,N) – CE

Z(V, T,N) =
∑
states

exp [−E/T ] δ[N −Ns]

(V, T, µ) – GCE

Z(V, T, µ) =
∑
states

exp [µN/T ] exp [−E/T ]
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I. BASIC CONCEPTS OF STATISTICAL MECHANICS

In this section we briefly remind the basic concepts of statistical mechanics and the properties

of the simplest statistical systems where one can make all calculations analytically.

A. Canonical (V,T,N) Ensemble

We start from the canonical ensemble (CE) of non-relativistic classical particles (with Boltz-

mann statistic) that applies for the system with fixed volume V , temperature T and number

of particles N . The partition function in CE reads [? ]:

Zce(V, T,N) =
1

N !

g

(2π)3

∫
dx1dp1 . . .

g

(2π)3

∫
dxNdpN exp

[
− EN

T

]
. (1)

Here g is a particle degeneracy factor; N ! stands because we consider classical indistinguishable

particles (Gibbs); dx ≡ d~x ≡ d3x ≡ dx dy dz and similarly dp are the spatial and momentum

coordinates of a particle, and EN is the microscopic N -particle energy usually presented as the

sum of potential and kinetic terms:

EN = UN(x1, . . . ,xN) +
N∑
i=1

εi , (2)

where

εi =
√
m2 + p2

i → m +
p2
i

2m
→ p2

i

2m
(3)

is non-relativistic one-particle energy with with m being the particle mass (to omit term

m is only possible if N=const). For the N -particle energy given by (3) the momentum

distribution is universal (Maxwell-distribution). The integration over momentum in Eq. (1)

can be done explicitly. The integral depends only on p2
i = p2

i therefore we can make the

integration in the spherical coordinate system, dpi = 4πp2dp:∫ ∞
0

dpi
(2π)3

exp

[
− p2

i

2mT

]
=

∫ ∞
0

p2
i dpi
2π2

exp

[
− p2

i

2mT

]
=

(
mT

2π

)3/2

.

It gives for the partition function (we assume g = 1 for simplicity):

Zce(V, T,N) =
1

N !

(
mT

2π

)3N/2 ∫
V

dx1 . . . dxN exp

[
− UN

T

]
.
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The particle coordinates x1, . . . ,xN are integrated over the system volume V . The CE ther-

modynamical functions can be expressed in terms of the Helmholtz free energy:

F (V, T,N) = −T ln Zce(V, T,N) . (4)

The CE entropy S, pressure P , average energy E and chemical potential µ are equal to:

P = −
(
∂F

∂V

)
T,N

, S = −
(
∂F

∂T

)
V,N

, (5)

E = F + TS , µ =

(
∂F

∂N

)
T,V

. (6)

For the non-interacting particles, the potential energy vanishes, UN = 0, thus, the coordinate

integration gives the system volume:∫
V

dx1 . . . dxN = V N . (7)

The ideal gas partition function and the free energy are:

Zce =
V N

N !

(
mT

2π

)3N/2

,

F ∼= −NT − NT ln

[
V

N

(
mT

2π

)3/2
]
,

where we have assumed N � 1 and used Stirling’s formula: lnN ! ∼= N(lnN − 1). The

thermodynamical functions of the ideal gas from Eqs. (5-6) read:

P =
N T

V
, S =

5

2
N + N ln

[
V

N

(
mT

2π

)3/2
]
, (8)

E =
3

2
N T , µ = −T ln

[
V

N

(
mT

2π

)3/2
]
. (9)

Ideal gas equations PV = NT and E = 3TN/2 are known from the school text-books. The

entropy (8) goes to − ∞ at T → 0. This is in contradiction with 3rd law of thermodynamics.

To have S = +0 at T = 0 one needs quantum mechanics – Bose and Fermi statistics.

Classical formulation considered above is called the Boltzmann approximation.
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B. Grand Canonical (V,T,µ) Ensemble

The system with fixed volume, temperature and chemical potential is described by the grand

canonical ensemble (GCE),

Zgce(V, T, µ) =
∞∑
N=0

exp

(
µN

T

)
Zce(V, T,N) , (10)

where Zce(V, T,N) is given by Eq. (1) and µ is the chemical potential. The thermodynamic

potential in GCE is called grand potential and is defined similar to the CE (4), and MCE (21):

Ω(V, T, µ) = −T ln Zgce(V, T, µ) . (11)

The pressure, entropy, energy and the number of particles are obtained similarly:

P = −
(
∂Ω

∂V

)
T, µ

= P (T, µ) , S = −
(
∂Ω

∂T

)
V, µ

, (12)

E = Ω + TS + Nµ , N =

(
∂Ω

∂µ

)
T,V

. (13)

The substitution of Zce in (10) gives the GCE partition function of non-relativistic non-

interacting Boltzmann particles:

Zgce = exp

[
V

(
mT

2π

)3/2

eµ/T

]
. (14)

It gives:

P = T

(
mT

2π

)3/2

eµ/T , S = V

(
mT

2π

)3/2

eµ/T
(

5

2
− µ

T

)
, (15)

E =
3

2
N T , N = V

(
mT

2π

)3/2

eµ/T , (16)

and

Zgce = exp
[
N
]
. (17)

Substituting N in the expressions for P and S one can see that the GCE and CE (8), (9)

coincide for N = N . Thus, CE (T,N, V ) (8, 9) and GCE (T, µ, V ) (15, 16) are equivalent.

This thermodynamical equivalence of statistical ensembles are only valid in the
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thermodynamical limit V → ∞. Statistical fluctuations are different in different

ensembles even in the thermodynamical limit.

The function p(T, µ) is the main function in the GCE:

N

V
≡ n =

(
∂p

∂T

)
µ

,
S

V
≡ s =

(
∂p

∂T

)
µ

,
E

V
≡ ε = Ts + µn − p . (18)

In the relativistic gas particles can be created and annihilated. The number of particles is

not conserved. In relativistic gas only the charges (e.g., baryonic number, electric charge, and

strangeness are conserved).

C. Micro Canonical (V,E,N) Ensemble

The system of non-interacting particles with fixed volume, number of particles and energy,

instead of temperature, is described by the micro canonical ensemble (MCE). The corresponding

partition function reads:

Zmce(V,E,N) =
1

N !

V N

(2π)3N

∫
dp1 . . .

∫
dpN δ [ E − EN ] (19)

The difference of the MCE partition function (19) from the CE one (1) is in the δ-function that

provides energy conservation. One finds,

Zmce =
V N

N !

(
mE

2π

)3N/2
1

E Γ(3N/2)
, (20)

The MCE entropy plays the role of the CE Helmoltz free energy (4). It is defined as,

S(V,E,N) = ln [ E0 Zmce(V,E,N) ] . (21)

where E0 is an arbitrary constant with a dimension of energy. The MCE temperature, pressure,

and chemical potential are the following:

P = T

(
∂S

∂V

)
E,N

,
1

T
=

(
∂S

∂E

)
V,N

,

E = const , µ = − T

(
∂S

∂N

)
V,E

,
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Assuming N � 1, using Stirling’s formula Γ(3N/2) ∼= 3N/2 [ln(3N/2) − 1], and choosing

E0 = E, which gives ln(E0 · E3N/2−1) = ln(E3N/2), one obtains:

P =
2

3

E

V
=

N T

V
, S =

5

2
N + N ln

[
V

N

(
mE

3Nπ

)3/2
]
, (22)

E = const , µ = − T ln

[
V

N

(
mE

3Nπ

)3/2
]
, (23)

If E = E, the ideal gas of N particles in the volume V has the same temperature, pressure,

chemical potential and entropy in the MCE (22,23) and in the CE (8,9). This means the

thermodynamical equivalence of CE and MCE at N � 1. The statistical mechanics can

be therefore reduced to a single postulate: at fixed system energy all microstates have the same

probability (MCE).

A). MCE→ CE. Let us consider the MCE with energy Etot which consists of the system with

energy E and thermostat with N0 number of classical noninteracting particles. It is assumed

that: E0 = Etot − E ≡ 3TN0/2� E.

f(E) ∼
∫
dk1 . . . dkN0 δ

(
Etot −

N0∑
j=1

k2
j

2m
− E

)
∼ (Etot − E)3N0/2

∼
(

1− E

3TN0/2

)3N0/2

∼= exp

(
− E
T

)
(24)

B). MCE → GCE.

C). exp(−E/T ) versus δ(E − E0).

D. Ultra-Relativistic Gas

This is the Boltzmann approximation for the photon gas. It corresponds to the ultra-

relativistic limit where particle momentum is much bigger than the mass,

εi =
√
m2 + p2

i → pi . (25)
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Number of photons is not fixed. Thus the GCE should be considered. Number of photons is

not conserved, Thus µ = 0. The GCE partition function reads:

Zgce(V, T, µ = 0) =
∞∑
N=0

1

N !

(
gV

2π2

)N ∫ ∞
0

p2
1dp1 . . . p

2
NdpN exp

[
−

N∑
i=1

pi
T

]

=
∞∑
N=0

1

N !

(
gV T 3

π2

)N
= exp[ N ] , (26)

It gives:

P =
g

π2
T 4 , s =

4g

π2
T 3 , (27)

ε =
3g

π2
T 4 ≡ σSBT

4 , n =
g

π2
T 3 . (28)

E. Bose and Fermi gases

Let us consider non-interacting quantum particles in the box

V = Lx · Ly · Lz

with periodic boundary conditions. Particle momenta have the discrete values

ki =
2π

Li
li , li = 0,±1,±2, . . . , i = x, y, z .

Particle energy is

ε(k) =
√
m2 + k2 , k2 = k2

x + k2
y + k2

z .

The microscopic state of the gas is defined by the occupation numbers {nk}.

E =
∑
k

nk ε(k) , N =
∑
k

nk .

The grand canonical partition function reads:

Zgce(V, T, µ) =
∑
{nk}

exp

[
1

T

∑
k

(µ − ε(k))nk

]
.

exp

[
1

T

∑
k

(µ − ε(k))nk

]
=
∏
k

xnk , x ≡ exp

[
1

T
(µ − ε(k))nk

]
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Thus, different k levels are independent (uncorrelated). Let us consider one k-level. Single

level partition function reads:

zk =
∑
nk

xnk .

There are two type of particle in nature: Bosons with nk = 0, 1, 2, ... and Fermions with

nk = 0, 1. One finds for Bosons,

zk =
∞∑

nk=0

xnk =
1

1− x
,

and for Fermions

zk =
∑

nk=0, 1

xnk = 1 + x .

The average values of the occupation numbers can be calculated as

〈nk〉 =
1

zk

∑
nk

nk x
nk .

One finds

〈nk〉 =
x

1− x
=

1

exp [(ε(k) − µ) /T ] − 1
for Bosons

and

〈nk〉 =
x

1 + x
=

1

exp [(ε(k) − µ) /T ] + 1
for Fermions.

In large systems ∑
k

. . . =
g V

(2π)3

∫
d3k . . .

. This is not valid for k = 0 in a case of the Bose condensation.

The system pressure equals to:

P (T, µ) =
gV

6π2

∫ ∞
0

k2dk
k2

√
m2 + k2

[
exp

(√
m2 + k2 − µ

T

)
− γ

]−1

, (29)

with γ = 1 for Bosons, γ = −1 for Fermions, and γ = 0 corresponds to the Boltzmann

approximation. With Eq.(29) one obtains:

s =

(
∂p

∂T

)
µ

, n =

(
∂p

∂µ

)
T

, ε = Ts + µn − P . (30)
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F. Partition function and mean multiplicity in the CE

Let us consider the system which consists of one sort of positively and negatively charged

particles (e.g. π+ and π− mesons) with total charge equal to zero Q = 0 . The chemical

potential µQ regulates the conserved charge Q. In the case of the Boltzmann ideal gas (the

interactions and quantum statistics effects are neglected) in the volume V and at temperature

T the GCE partition function reads:

Zgce(V, T ) =
∞∑

N+=0

∞∑
N−=0

(λ+z)N+

N+!

(λ−z)N−

N−!
= exp (λ+z + λ−z) = exp(2z) , (31)

where λ+ = exp(µQ/T ) and λ− = exp(−µQ/T ) , and µQ = 0 leads to 〈Q〉 = 0. In Eq. (31) z

is a single particle partition function

z =
V

(2π)3

∫
d3k exp[−(k2 +m2)1/2/T ] = =

V

2π2
T m2 K2(m/T ) . (32)

The CE partition function is obtained by an explicit introduction of the charge conservation

constrain, N+ −N− = 0 for each microscopic state of the system and it reads:

Zce(V, T ) =
∞∑

N+=0

∞∑
N−=0

(λ+z)N+

N+!

(λ−z)N−

N−!
δ(N+ −N−) = (33)

=
1

2π

∫ 2π

0

dφ exp
[
z (λ+ eiφ + λ− e

−iφ)
]

= I0(2z) .

The average number of N+ and N− can be calculated:

〈N±〉gce = z , 〈N±〉ce = z
I1(2z)

I0(2z)
. (34)

The exact charge conservation leads to the CE suppression (I1(2z)/I0(2z) < 1) of the charged

particle multiplicity relative to the result for the GCE (91). The ratio of 〈N±〉 calculated in

the CE and GCE is plotted as a function of z in Fig. 5.

In the large volume limit (V →∞ corresponds also to z →∞) the results for mean quantities

in the c.e. and g.c.e. are equal. This result is referred as an equivalence of the canonical and

grand canonical ensembles. It can be obtained using an asymptotic expansion of the modified

Bessel function [? ]:

lim
z→∞

In(2z) =
exp(2z)√

4πz

[
1 − 4n2 − 1

16z
+ O

(
1

z2

)]
, (35)
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Figure 1: Left: The ratio of 〈N±〉c.e. to 〈N±〉g.c.e. as a function of z. Right: The scaled variances of

N± calculated within the g.c.e. , ω±g.c.e. = 1, and c.e. , ω±c.e..

which gives I1(2z)/I0(2z)→ 1 and therefore

〈N±〉ce ∼= 〈N±〉gce = z . (36)

Using the series expansion one gets [? ] for small systems (z � 1):

In(2z) =
zn

n!
+

zn+2

(n+ 1)!
+ O

(
zn+4

)
, (37)

and consequently I1(2z)/I0(2z) ∼= z which results in

〈N±〉c.e. ∼= z2 � 〈N±〉g.c.e. = z . (38)

The asymptotics of the mean multiplicity discussed above are clearly seen in Fig. ??.

G. Baryon-antibaryon statistical system

One can consider the statistical production of anti-baryons within the canonical ensemble

(CE) formulation. In this case the material conservation laws are imposed on each microscopic

state of the system. This condition introduces a significant correlation between particles which

carry conserved charges. The correlation reduces the effective number of degrees of freedom and

consequently leads to the CE suppression of the charged particle multiplicity when compared

with the result of the calculations done within GCE.
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Let us consider the system of baryons ’b’ and anti-baryons ’a’ with total baryon number B

as the Boltzmann ideal gas in the volume V , at temperature T . The CE partition function is

Z(T, V,B) =
∞∑

Nb,Na

(λaza)
Na

Na!

(λbzb)
Nb

Nb!
δ [B − (Nb −Na)] , (39)

where the single baryon (anti-baryon) partition function reads (see Eq. ?? in Appendix):

za,b = zj(T, V ) =
gjV

(2π)3

∫
d3k exp[−(k2 +m2

j)
1/2/T ] = (40)

=
gjV

2π2
T m2

j K2(mj/T ) ≡ V fj(T ) .

The (anti-)baryon mass and degeneracy factor are denoted here by mj and gj, respectively.

Auxiliary parameters λb and λa are introduced in order to calculate the mean number of baryons

and anti-baryons and they are set to unity in the final formulae. By expressing the δ-function

in (39) as

δ(n) =
1

2π

∫ 2π

0

dφ e−inφ ,

Eq. (39) becomes

Z(T, V,B) =
1

2π

∫ 2π

0

dφ e−iBφ
∞∑

Nb=0

∞∑
Na=0

(λbzb e
iφ)Nb

Nb!

(λaza e
−iφ)Na

Na!

=
1

2π

∫ 2π

0

dφ e−iBφ exp

[∑
j

zj(λb e
iφ + λa e

−iφ)

]
. (41)

This form of the CE partition function allows one to derive the mean numbers of baryons and

anti-baryons

〈Nj〉 =
1

Z

∂Z

∂λj

∣∣∣
λb=λa=1

, (42)

For λb = λa = 1 the partition function (41) can be presented as the modified Bessel function

Z(T, V,B) =
1

2π

∫ 2π

0

dφ e−iBφ exp(2z cosφ) = IB(2z) , (43)

where z ≡ za+zb. This yields final expressions for the mean number of baryons and anti-baryons

〈Nb〉 = zb
IB−1(2z)

IB(2z)
, 〈Na〉 = za

IB+1(2z)

IB(2z)
. (44)
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As the exact baryon number conservation is imposed on each microscopic state it is evidently

fulfilled also by the average values (44):

〈Nb〉 − 〈Na〉 = B , (45)

as indeed can be easily seen from the identity In−1(x)− In+1(x) = 2nIn(x)/x [? ]. Eq. (44) is

valid for all combinations of B and z values. 1

The CE expressions for the mean number of baryons and anti-baryons can be further sim-

plified for the two limiting cases: z � 1 (small systems) and z � 1 (large systems). Using the

representation of In as the infinite series [? ]

In(2z) =
∞∑
k=0

zn+2k

k!(n+ k)!
,

one obtains for small systems

〈Nb〉 ∼= B
zb
z

+
zb · z
B + 1

+ o(zb · z3) , 〈Na〉 ∼=
za · z
B + 1

+ o(za · z3) . (46)

The dependence 〈Na〉 ∝ V 2/(B + 1) is therefore observed from Eq. (46) for the anti-baryon

yield in small systems.

One can show that for large systems (z � 1) the CE becomes equivalent to the GCE. In the

thermodynamical limit V →∞, B →∞ with B/V ≡ ρB = const(V ). The uniform asymptotic

expansion of the modified Bessel functions at n→∞ [? ] can be used

In(nx) ∼=
1√
2πn

exp(nη)

(1 + x2)1/4

[
1 + o

(
1

n

)]
; η ≡

√
1 + x2 + ln

x

1 +
√

1 + x2
.

It gives the same partition function and the average number of baryons and anti-baryons in the

GCE and CE:

Z(V, T, µB) =
∑
b

exp

(
µBb

T

)
Z(T, V, b) = exp

[
z
(
eµB/T + e−µB/T

)]
, (47)

〈Nb〉 = zj exp(µB/T ) , 〈Na〉 = zj exp(−µB/T ) , (48)

1 The specific case of B = 0 in the nucleon–antinucleon gas (i.e., no resonances included) the Eq. (44) reduces

to the result of Rafelski and Danos [? ].
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where µB is a baryon chemical potential which is defined as:

exp(µB/T ) =
B

2z
+

√
1 +

(
B

2z

)2

. (49)

From Eqs. (44) and (48) the anti-baryon densities for the CE and GCE are equal to

〈Na〉
V
|CE ≡ na |CE= fj

IB+1(2z)

IB(2z)
= fj

IB+1(xB)

IB(xB)
∼= fj

x

2

B

B + 1
, (50)

〈Na〉
V
|GCE ≡ na |GCE= fj exp(−µB/T ) = fj

x

1 +
√

1 + x2
, (51)

where f ≡
∑

j fj, x ≡ 2z/B = 2f/ρB, and the last approximation in Eq. (50) is valid for small

systems only 2. Equations (50,51) give us the primary thermal density for all individual anti-

baryon states j. Each non-strange resonance (anti)baryon state decays finally into (anti)nucleon

plus meson(s). Therefore, the total (primary plus resonance decay) antinucleon density equals

to the total thermal anti-baryon density, na =
∑

j na and is given by Eqs. (50,51) with the

substitution of fj by a sum f =
∑

j fj.

We define a canonical suppression factor

Fcs ≡
(na)CE

(na)GCE
. (52)

It quantifies the antinucleon suppression due to the exact baryon number conservation and is

the same for any individual anti-baryon state.

In the B = 0 case the baryon and anti-baryon densities are equal and Eqs. (50) and (51)

yield

na |CE= nb |CE= fj
I1(2z)

I0(2z)
∼= fj z, na |GCE= nb |GCE= fj , (53)

where the approximation for the CE density is valid for small system only. The canonical

suppression factor (52) for B = 0 is equal to

F 0
cs =

I1(2z)

I0(2z)
∼= f V . (54)

The approximation in Eq. (54) is valid for small system only (z ≡ fV � 1).

2 Introducing the variable x we have transformed the finite size V -dependence of the CE density (50) into its

dependence on the baryon number B.
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The behavior of the canonical suppression factor F 0
cs (54) is shown by the solid lines in Fig. 2,

Left for T = 160 MeV, 170 MeV and 180 MeV, assuming that f is the sum of fj over all non-

strange baryons. The lines start from V = 5 fm3, which is approximately equal to the estimate

of the hadronization volume for e+ + e− interactions at
√
s = 29 GeV [? ]. One observes

(see Fig. 2, Left) a strong CE suppression of the (anti)baryon density. For T = 160 MeV the

(anti)baryon density increases by a factor of 10 from its value at V = 5 fm3 to its V → ∞

GCE limit. For the small systems the (anti)baryon density increases approximately linearly

with V , i.e., the (anti)baryon multiplicity for the small systems is proportional to V 2. The

CE suppression becomes less pronounced and the volume region with linear increase of the

(anti)baryon density is reduced for increasing temperature.

101 102

V [fm3]

10-1

100

F
o

cs

2 8 14 20

B

0.0

0.5

1.0
F

B
cs

Figure 2: Left The solid lines show the CE suppression factor F 0
cs (52) for T = 160 MeV, 170 MeV

and 180 MeV (from bottom to top) for B = 0. Right The finite size B-dependence of the anti-baryon

production in baryon rich (B ≥ 2) systems at different values of the variable x (x ≡ 2z/B = 2f/ρB).

The solid lines show the CE suppression factor FBcs (55) for x=1 and x=5 (from below to above). The

lower dotted line corresponds to the limiting B/(B + 1) behavior (56).
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Let us now turn to the anti-baryon production in baryon rich system. In the analysis of data

on particle multiplicities in p+p, p+A and A+A collisions one usually assumes that all partic-

ipating nucleons in the collisions (wounded nucleons) take part in the statistical hadronization

of the system. It means that in the analysis of the NA49 results on antiprotons from p+p

interactions to central Pb+Pb collisions at 158 A·GeV we should study statistical systems with

2 ≤ B ≤ 400. The pion to baryon ratio in the statistical model is determined by two param-

eters: the temperature and baryon density. Thus as the temperature is found to be constant

(T = 175± 15 MeV) we conclude that the baryon density at hadronization in nuclear collisions

at 158 A·GeV is also approximately constant.

Therefore, we study the evolution of the anti-baryon density with increasing net baryon

number B at T = const and ρB = const. The CE suppression factor (52) is found at these

conditions from Eqs. (50,51)

FB
cs =

1 +
√

1 + x2

x

IB+1(xB)

IB(xB)
; x ≡ 2f

ρB
. (55)

Its B-dependence is plotted in Fig. 2, Right for several different values of the parameter x.

Note that our assumption T = const and ρB = const for statistical hadronization at different

values of B can be substituted by a weaker one, x = const. From Fig. 2, Right one observes

that the CE suppression of anti-baryon density becomes stronger at high baryon density (i.e.,

small x). For x < 1 the CE suppression FB
cs (55) becomes close to its x→ 0 limit:

FB
cs =

B

B + 1
. (56)

Eq. (56) shows that the strongest CE suppression of the anti-baryon density is for the B = 2

(nucleon–nucleon interactions) case and it leads to the suppression factor of 2/3. This moderate

effect of CE suppression is in strong contrast with the large CE suppression (i.e., F 0
cs � 1) in

the baryon–free system. A mathematical reason of this very different behavior for B = 0 and

B ≥ 2 (with ρB = const(V )) is due to the fact that in the latter case both the order of the

modified Bessel functions and their arguments are dependent on B (i.e., on V ) whereas in the

B = 0 case only the argument increases with V .

The presence of non-zero baryon number B > 0 has a twofold effect on anti-baryon produc-

tion. First, it suppresses the production of anti-baryons: the additional factors exp(−µB/T ) =

16



x/(1 +
√

1 + x2) < 1 and 1/(B + 1) < 1 appear respectively in the ’large’ and ’small’ systems

for the anti-baryon density in comparison with the B = 0 case. On the other hand, the CE

suppression effect due to the exact baryon number conservation becomes smaller: at fixed T

and V the following inequality is always valid, FB
cs > F 0

cs. For fixed B > 0 the CE suppression

of anti-baryons becomes smaller when ρB decreases and it disappears completely (i.e., FB
cs → 1)

in the limit ρB → 0 (and respectively V → ∞ in order to keep the B value fixed). This is

because the total number of baryon–anti-baryon pairs becomes large due to large V . Note that

in this case the last approximation in Eq. (50) is no more valid. Instead one should use the

large argument asymptotic of the modified Bessel functions.

Thus for B ≥ 2 systems at constant x = 2f/ρB the CE suppression factor FB
cs (55) ranges

between 2/3 and 1 for x� 1 and between (1− 1/4x) and 1 for x� 1.

The statistical model with constant hadronization temperature correctly reproduces the

weak dependence of the p̄/π ratio on the system size in p+p and nuclear collisions at the

CERN SPS energy. A description of the ratio of J/ψ mesons to pions within the statistical

hadronization model requires also a constant temperature parameter in p+p and A+A collisions

at the CERN SPS. However, the same model with T = const does not give a natural explanation

of the approximate independence of the p̄/π ratio of collision energy in e++e− interactions.

Therefore, a consistent description of hadron production within the statistical hadronization

model has not yet been achieved.
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II. HADRON RESONANCE GAS

u d s c b t

m (MeV) ∼ 5 ∼ 10 ∼ 150 ∼ 1500 ∼ 5000 ∼ 1.7 · 105

B 1/3 1/3 1/3 1/3 1/3 1/3

Q 2/3 -1/3 -1/3 2/3 -1/3 2/3

S 0 0 - 1 0 0 0

charm 0 0 0 1 0 0

beauty 0 0 0 0 - 1 0

top 0 0 0 0 0 1

Table I: Quarks

Mesons=(qi, qj):

π0(135) , π±(139) , η(548) , ρ(770) , ω(782) , ... , f2(2340) ,

strange mesons : K±(494) , K0(497) , ... , K∗4(2045)

charm mesons : D0(1865) , D±(1870) , ... , D∗2(2460)

Baryons=qi, qj, qk

B = 1, S = 0 : p(938) , n(940) , η(548) , ∆(1232) , N(1440) , ... , ∆(2420) ,

B = 1, S = −1 : Λ(1116) , ... Λ(2350) , Σ+(1189) , ...,Σ(2250) ,

B = 1, S = −2 : Ξ0(1314) , ... Ξ(2030) ,

B = 1, S = −3 : Ω−(1672) , ... Ω(2250) .

We introduce the GCE formulation of a gas of hadrons with arbitrary masses and quantum

statistics. The conservation charges are: electric charge, baryon number, and strangeness. Con-

sidering all spectrum of hadrons and resonances with corresponding widths we also effectively

take into account the interactions between particles.
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εi =
√
m2
i + p2

i , (57)

The Bose and Fermi distributions (γ = +1 for Bose and −1 for Fermi statistics),

1

exp
[(√

m2
i + p2

i − µi

)
/T
]
− γ

, (58)

are used for mesons and (anti)baryons, respectively. The chemical potential µi is the sum of

the three chemical potentials that correspond to three conserved charges B, Q, and S:

µi = qiµQ + biµB + siµS , (59)

and qi, bi, si are the corresponding charges of a particle i.

Resonance decays are included by additional integration with Breit-Wigner mass distribution

of resonances with corresponding widths Γi.

〈Nprim
i 〉 =

gi V

2π2

∫ ∞
0

k2dk

∫
ds

1

exp
[(√

s2 + k2 − µi
)
/T
]
− γi

1

π

mi Γi
(s−m2

i )
2 +m2

iΓ
2
i

,

(60)

Resonance decays with corresponding branching ratios Br:

〈Ni〉 = N
prim

i +
∑

Br(j → i)ni (61)

where N
prim

i is the number of particles that corresponds to the given volume, temperature, and

chemical potentials, and ni is the number of particles created in the decay j → i.

Chemical potentials.

h1 + . . . hk → H1 + . . . Hl , H1 + . . . Hl → h1 + . . .+ hk . (62)

Chemical equilibrium

µh1 + . . . µhk = µH1 + . . . µHl
. (63)
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With Eq.(59) one finds

µB (bh1 + . . . bhk) + µQ (qh1 + . . . qhk) + µS (sh1 + . . .+ shk)

= µB (bH1 + . . . bHl
) + µQ (qH1 + . . . qHl

) + µS (sH1 + . . .+ sHk
) . (64)

µB, µQ, µS – ?

1. π+, π−, π0 .

µπ0 = 0 , µpi+ = µQ , µπ− = − µQ .

µQ > 0→ 〈Q〉 > 0 , µQ = 0→ 〈Q〉 = 0 , µQ < 0→ 〈Q〉 < 0 .

2. p, n, p, n, π+, π−, π0 .

µn = µB , µn = −µB , µp = µB + µQ , µp = −µB − µQ .

A+A collisions at small energies: the system of nucleons with small T (no pions) and large

µB (no antinucleons) are created. What are µB and µQ in the system of nucleons? T and µB

are independent variables. µQ is not independent variable! In nuclei Np
∼= Nn, i.e., Q ∼= 0.5B

(in heavy nuclei Q ∼= 0.4B). To have Np
∼= Nn one needs µp ∼= µn and, thus, µQ ∼= 0. To have

Np < Nn one needs µp < µn and, thus, µQ < 0. As a consequence, one finds µπ+ < 0 < µpi− and

therefore Nπ− > Nπ0 > Nπ+ . It is different from p+p collisions, where Nπ− < Nπ0 < Nπ+.

This is because Q = B = 2 and µQ > 0.

3. nucleons (non strange baryons), strange baryons (Λ, Ξ, Ω), strange mesons (K, K). In

the system created in A+A collisions B = 2A, Q ∼= 0.5B, and S = 0. Independent variables

are T and µB. What are the values of µS? For simplicity we neglect small value of µQ and

assume µQ ∼= 0.

µΛ = µB − µS
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If Λ would be the only strange particle the S = 0 would lead to NΛ = NΛ and µΛ = µΛ = 0, or

µS = µB. However, there are both strange (anti)baryons and strange mesons. Zero strangeness

means

〈Λ〉 + 〈K+〉 − 〈K−〉 ± . . . ∼= 0

One finds

0 < µS(T, µB) < µB

Fermi Gas

p(T, µ) =
gV

2π2

∫ ∞
0

k2dk
k2

(k2 +m2)1/2

[
exp

(√
k2 +m2 − µ

T

)
+ 1

]−1

. (65)

s =

(
∂p

∂T

)
µ

, n =

(
∂p

∂µ

)
T

, ε = Ts + µn − p . (66)

Particle number density:

n =
g

2π2

∫ ∞
0

k2dk

[
exp

(√
k2 +m2 − µ

T

)
+ 1

]−1

. (67)

At T → 0 the Fermi distribution should have µ > m, and it goes to 1 for k < kF and to 0 at

k > kF , where
√
k2
F +m2 = µ.

Ultra-relativistic approximation: m = 0, thus, kF = µ. It gives

n =
g

2π2

∫ kF

0

k2dk =
g

6π2
k3
F =

g

6π2
µ3 .

Non-relativistic approximation

√
k2 +m2 − µ ∼= m +

k2

2m
− µ ≡ k2

2m
− µnr . (68)

In this case,

kF = (2mµnr)1/2

and

n =
g

2π2

∫ kF

0

k2dk +
g

6π2
k3
F =

g

6π2
(2mµnr)3/2 .
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Bose Gas

p(T, µ) =
gV

2π2

∫ ∞
0

k2dk
k2

(k2 +m2)1/2

[
exp

(√
k2 +m2 − µ

T

)
− 1

]−1

. (69)

s =

(
∂p

∂T

)
µ

, n =

(
∂p

∂µ

)
T

, ε = Ts + µn − p . (70)

Particle number density:

n =
g

2π2

∫ ∞
0

k2dk

[
exp

(√
k2 +m2 − µ

T

)
− 1

]−1

. (71)

For the Bose distribution µ < m (or µnr < 0. If n is fixed and T decreases, the chemical po-

tential µ increases. It reaches its maximal value µ = m at TBE and Bose-Einstein condensation

at the level k = 0 takes place.

III. QGP: LATTICE QCD AND PHENOMENOLOGICAL MODELS

µB = 0: Lattice QCD, nucleus-nucleus collisions at RHIC and LHC.

Boltzmann approximation

〈N〉 =
gV

2π2

∫ ∞
0

k2dk exp
[
−
√
k2 +m2/T

]
=

gV

2π2
m2T K2(m/T ) . (72)

At m� T

〈N〉 = g V

(
mT

2π

)3/2

exp (−m/T ) ,

and at m� T

〈N〉 =
gV

π2
T 3

.

Pressure:

p = nT , n ≡ N

V

Energy density:

ε =

(
m +

3

2
T

)
n , at m� T ,
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ε = 3nT ≡ σ T 4 ≡ 3g

π2
T 4 , at m� T ,

Massless Bose and Fermi gases:∫ ∞
0

x2dx x [exp(x) − 1]−1 = 3! ζ(4) =
π4

15
,∫ ∞

0

x2dx x [exp(x) + 1]−1 =
7

8

∫ ∞
0

x2dx x [exp(x) − 1]−1 (73)

The Stephan-Boltzmann law for massless non-interacting particles:

ε = σ T 4 , (74)

with Stephan-Boltzmann constant (g = 1),

σFermi =
7

8

π2

30
∼= 0.29 < σBoltz =

3

π2
∼= 0.30 < σBose =

π2

30
∼= 0.33 . (75)

Ideal QGP

p(T, µ) = pg + pq + pg

µi = biµB + siµS + qiµQ

Ideal Gluon Gas. Gluon has no conserved charges, and µg = 0.

pg =
σg
3
T 4 , σg =

gg π
2

30
T 4 , gg = 2 · 8 , (76)

εg = T
dpg
dT
− p = σg T

4 , p =
1

3
ε . (77)

In A+A collisions, the QGP is formed with non-zero baryonic density

ρB =
B

V

, the electric charge density

ρQ =
Q

V
=

B

2V
=

1

2
ρB ,
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and zero strangeness density

ρS = 0.

.

One finds:

S = Ns +Ns = 0 , (78)

B =
1

3
(Nu −Nu +Nd −Nu) , (79)

Q =
2

3
(Nu −Nu) −

1

3
(Nd −Nd) . (80)

If µQ = 0, one obtains Nu = Nd ≡ Nq and Nu = Nd ≡ Nq. Then

B =
2

3
(Nq −Nq) , (81)

Q =
2

3
(Nq −Nq) −

1

3
(Nq −Nq) =

1

3
(Nq −Nq) =

1

2
B (82)

From Ns = Ns it follows

µS =
1

3
µB

.

In general, there are two independent variable: T and µB. The strange chemical potential

µS = µS(T, µB) and electric chemical potential µQ = µQ(T, µB) are obtained from S = 0 and

Q = (0.4− 0.5)B.

For massless on-interacting quarks the QGP can be calculated analytically

pqg(T, µB) =
σ

3
T 4 +

(µB
3

)2

T 2 +
1

2π2

(µB
3

)4

, (83)

where

σ =
π2

30

(
2 · 8 +

7

8
· 2 · 2 · 3 · 3

)
.

Bag model:

pQGP (T, µB) = pqg(T, µB) − B , ε(T, µB) = εqg(T, µB) + B . (84)

Examples of the 1st order phase transition.
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1). µB = 0. Hadron phase – massless pion gas (gπ = 3):

pπ(T ) =
π2

10
T 4

QGP

pQGP (T ) =
π2

30

(
16 +

21

2

)
T 4 − B . (85)

1st order phase transition (Gibbs criterium):

pπ(Tc) = pQGP (Tc) . (86)

Equations (86) gives

Tc =

(
3

σQGP − σH
B

)1/4

. (87)

2). µB ≥ 0. Hadron phase – heavy nucleons and antinucleons plus pions. The line of the

1st order phase transition in the T -µB plane is defined by

pH(T, µB) = pQGP (T, µB) . (88)
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Figure 3: The lattice results from Ref. [? ] for 3p/T 4 (circles) and ε/T 4 (squares) at zero baryonic

chemical potential.

IV. PARTICLE NUMBER FLUCTUATIONS

A. Partition function and mean multiplicity

The analysis of fluctuations is an important tool to study a physical system created in high

energy nuclear collisions (see e.g. [? ]). Recently, rich experimental data on fluctuations of

particle production properties in nuclear collisions at high energies have been presented.

Let us consider the system which consists of one sort of positively and negatively charged

particles (e.g. π+ and π− mesons) with total charge equal to zero Q = 0 . In the case of

the Boltzmann ideal gas (the interactions and quantum statistics effects are neglected) in the

volume V and at temperature T the GCE partition function reads:

Zg.c.e.(V, T ) =
∞∑

N+=0

∞∑
N−=0

(λ+z)N+

N+!

(λ−z)N−

N−!
= exp (λ+z + λ−z) = exp(2z) . (89)

In Eq. (89) z is a single particle partition function
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Figure 4:

The CE partition function is obtained by an explicit introduction of the charge conservation

constrain, N+ −N− = 0 for each microscopic state of the system and it reads:

Zc.e.(V, T ) =
∞∑

N+=0

∞∑
N−=0

(λ+z)N+

N+!

(λ−z)N−

N−!
δ(N+ −N−) = (90)

=
1

2π

∫ 2π

0

dφ exp
[
z (λ+ eiφ + λ− e

−iφ)
]

= I0(2z) .

The average number of N+ and N− can be calculated:

〈N±〉g.c.e. = z , 〈N±〉c.e. = z
I1(2z)

I0(2z)
. (91)

The exact charge conservation leads to the c.e. suppression (I1(2z)/I0(2z) < 1) of the charged

particle multiplicity relative to the result for the g.c.e. (91). The ratio of 〈N±〉 calculated in

the c.e. and g.c.e. is plotted as a function of z in Fig. 5.

In the large volume limit (V →∞ corresponds also to z →∞) the results for mean quantities

in the c.e. and g.c.e. are equal. This result is referred as an equivalence of the canonical and

grand canonical ensembles. It can be obtained using an asymptotic expansion of the modified
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Figure 5: Left: The ratio of 〈N±〉c.e. to 〈N±〉g.c.e. as a function of z. Right: The scaled variances of

N± calculated within the g.c.e. , ω±g.c.e. = 1, and c.e. , ω±c.e..

Bessel function [? ]:

lim
z→∞

In(2z) =
exp(2z)√

4πz

[
1 − 4n2 − 1

16z
+ O

(
1

z2

)]
, (92)

which gives I1(2z)/I0(2z)→ 1 and therefore

〈N±〉c.e. ∼= 〈N±〉g.c.e = z . (93)

Using the series expansion one gets [? ] for small systems (z � 1):

In(2z) =
zn

n!
+

zn+2

(n+ 1)!
+ O

(
zn+4

)
, (94)
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and consequently I1(2z)/I0(2z) ∼= z which results in

〈N±〉c.e. ∼= z2 � 〈N±〉g.c.e. = z . (95)

The asymptotics of the mean multiplicity discussed above are clearly seen in Fig. ??.

B. Scaled variance

An useful measure of fluctuations of any variable X is the ratio of its variance V (X) =

〈X2〉 − 〈X〉2 to its mean value 〈X〉, referred here as the scaled variance:

ωX ≡ 〈X
2〉 − 〈X〉2

〈X〉
. (96)

Note, that ωX = 1 for the Poisson distribution. Thus, to study the fluctuations of charged

particles the second moment of the multiplicity distribution 〈N2
±〉 has to be calculated. In the

g.c.e. (89) and CE (90) one finds:

〈N2
±〉g.c.e. =

1

Zg.c.e.

[
∂

∂λ±

(
λ±
∂ Zg.c.e.
∂λ±

)]
λ±=1

= z + z2 , (97)

〈N2
±〉c.e. =

1

Zc.e.

[
∂

∂λ±

(
λ±
∂ Zc.e.
∂λ±

)]
λ±=1

= z
I1(2z)

I0(2z)
+ z2 I2(2z)

I0(2z)
= z2 . (98)

The corresponding scaled variances are:

ω±g.c.e. =
〈N2
±〉g.c.e. − 〈N±〉2g.c.e.
〈N±〉g.c.e.

= 1 , (99)

ω±c.e. =
〈N2
±〉c.e. − 〈N±〉2c.e.
〈N±〉c.e.

= 1 − z

[
I1(2z)

I0(2z)
− I2(2z)

I1(2z)

]
. (100)

Using Eqs. (92) and (94) the asymptotic behavior of ω±c.e for both z → 0 and z → ∞ can

be found. The CE fluctuations measured in terms of ω are equal to those in the g.c.e. for

the small system (z � 1) (another variable to treat the fluctuations in the small systems is

discussed in Appendix):

ω±c.e
∼= 1 − z2

2
∼= 1 = ω±g.c.e . (101)

For large systems (z � 1) the scaled variance for the c.e. is two times smaller than the scaled

variance for the g.c.e. :

ω±c.e.
∼=

1

2
+

1

8z
∼=

1

2
=

1

2
ω±g.c.e. . (102)
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The dependence of the scaled variance calculated within the c.e and GCE on z is shown in

Fig. 2.

The scaled variance shows a very different behavior than the mean multiplicity. In the limit

of small z the ratio of the results for CE and GCE approaches zero for the mean multiplicity

(Fig. 1) and one for the scaled variance (Fig. 2). On the other hand in the large z limit the

mean multiplicity ratio approaches one and the scaled variance ratio 0.5. Thus in the case of

fluctuations the canonical and grand canonical ensembles are not equivalent.

C. Multiplicity distribution.

In the GCE the multiplicity distribution of N+ (and N−) is equal to the Poisson one:

Pg.c.e.(N+) ≡
∞∑

N−=0

Pg.c.e. (N+, N−) =
1

Zg.c.e.

∞∑
N−=0

zN+

N+!

zN−

N−!
(103)

= exp(−z) · z
N+

N+!
,

whereas the corresponding distribution in the c.e. (90) is:

Pc.e.(N+) ≡
∞∑

N−=0

Pc.e. (N+, N−) =
1

Zc.e.

∞∑
N−=0

zN+

N+!

zN−

N−!
· δ (N+ −N−) (104)

=
1

I0(2z)
·
(
zN+

N+!

)2

.

As an example, the distributions in GCE and CE are plotted in Figs. 3 and 4 for z = 0.5 (the

small system) and z = 10 (the large system), respectively.

As expected from the previous discussion, the c.e. distribution (104) is narrower (the

variance is smaller) than the g.c.e. one (103). This result is valid for both the large (z � 1)

and the small (z � 1) system. On the other hand, the average value of N± is smaller in the

c.e. than in the g.c.e. for small z. It results in ω±c.e. → ω±g.c.e = 1 at z → 0. Moreover, for

〈N±〉 � 1 one can easily demonstrate that ω± ∼= 1 for any P (N±) distribution if the conditions

P (0)� P (1)� P (k) (with k ≥ 2) are satisfied. Indeed, in this limit one can neglect all P (N±)

for N± ≥ 2 which results in:

ω± ≡
〈N2
±〉 − 〈N±〉2

〈N±〉
∼=

P (1) · 12 − [P (1) · 1]2

P (1) · 1
∼= 1 , (105)
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Figure 6: Left: Multiplicity distributions Pc.e.(N±) (104) and Pg.c.e.(N±) (103) for z = 0.5. Right: The

same for z = 10.

as P (1) ∼= 〈N±〉 � 1. In the large volume limit, see Fig. 4, the mean values of the CE and

GCE distributions become equal, but the CE distribution is narrower than the GCE one.
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D. Total multiplicity of charged particles

The total multiplicity of charged particles is defined as Nch = N+ + N−. Its average in

the g.c.e. and c.e. reads:

〈Nch〉g.c.e. = 〈 N+ +N− 〉g.c.e. = 〈N+〉g.c.e. + 〈N−〉g.c.e. = 2z , (106)

〈Nch〉c.e. = 〈 N+ +N− 〉c.e. = 〈N+〉c.e. + 〈N−〉c.e. = 2z
I1(2z)

I0(2z)
. (107)

In the g.c.e. one finds:

〈N2
ch〉g.c.e. = 〈N2

+ + 2N+N− +N2
−〉g.c.e. = 〈N2

+〉g.c.e. + 2〈N+〉g.c.e.〈N−〉g.c.e.+ (108)

+ 〈N2
−〉g.c.e. = z2 + z + 2z2 + z2 + z = 4z2 + 2z ,

and consequently the scaled variance of Nch in the g.c.e. is:

ωchg.c.e. ≡
〈N2

ch〉g.c.e. − 〈Nch〉2g.c.e.
〈Nch〉g.c.e.

=
4z2 + 2z − (2z)2

2z
= 1 . (109)

The result (109) also follows from explicit expression on the probability distribution of Nch in

the g.c.e. :

Pg.c.e.(Nch) ≡
∞∑
N+

∞∑
N−=0

Pg.c.e. (N+, N−) · δ [Nch − (N+ +N−)] (110)

=
1

Zg.c.e.

∞∑
N+

∞∑
N−=0

zN+

N+!

zN−

N−!
· δ [Nch − (N+ +N−)] = exp(−2z)

(2z)Nch

Nch!
.

Thus distributions of Nch and N± are Poissonian in the g.c.e. . In the c.e. the negatively and

positively charged particles are correlated, 〈N+ · N−〉c.e. 6= 〈N+〉c.e. · 〈N−〉c.e.. The correlation

term reads:

〈N+ ·N−〉c.e. =
1

Zc.e.

(
∂2 Zc.e.
∂λ+∂λ−

)
λ±=1

= z2 . (111)

Using Eqs. (98) and (111) one obtains the scaled variance of Nch in the c.e. :

ωchc.e. ≡
〈N2

ch〉c.e. − 〈Nch〉2c.e.
〈Nch〉c.e.

= 1 + z

[
I2(2z) + I0(2z)

I1(2z)
− 2

I1(2z)

I0(2z)

]
. (112)

The scaled variances ωchg.c.e and ωchc.e. as functions of z are shown in Fig. 7 together with ω±g.c.e

and ω±c.e..
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Figure 7: Left: The scaled variances ωchc.e. (112), ω±c.e. (100) and ω±g.c.e. = ωchg.c.e. = 1 (99,109) as

functions of z. Right: Multiplicity distributions of Nch for z = 0.5 in the g.c.e. and c.e. .

From Eqs. (100) and (112) and the recurrence relation I0(2z) = I2(2z) + I1(2z)/z [? ] it

follows that ωchc.e. = 2ω±c.e., i.e. the relative variance of total charge multiplicity Nch is two

times larger than the one of N±. This is because Nch = 2N+ = 2N− in each microscopic state

allowed by an exact charge conservation. One obtains a similar result for the case of particle

production via decay of neutral resonances, e.g., ρ0 → π+ + π−. The distributions of π+ and

π− coincide with the ρ0 distribution, and consequently ω± = ω, where ω is the scaled variance

33



of the distribution of ρ0. But because Nch = 2Nρ one gets ωch = 2ω.

Probability distribution of Nch in the c.e. reads:

Pc.e.(Nch) ≡
∞∑
N+

∞∑
N−=0

Pc.e. (N+, N−) · δ [Nch − (N+ +N−)] (113)

=
1

I0(2z)

∞∑
N+=0

∞∑
N−=0

zN+

N+!

zN−

N−!
· δ (N+ −N−) · δ [Nch − (N+ +N−)]

=
1

I0(2z)

[
zNch/2

(Nch/2)!

]2

.

It coincides, of course, with Pc.e.(N+) (104) at N+ = Nch/2. As an example , the probability

distributions Pg.c.e.(Nch) (110) and Pc.e.(Nch) (113) are shown for z = 0.5 (the small system)

and for z = 10 (the large system) in Figs. 6 and 7, respectively. Only even multiplicities

Nch = 0, 2, 4 . . . are allowed in the c.e. because of an exact charge conservation. For the

small system (z � 1) the ωch reads (both Pg.c.e.(Nch = 1) � 1 and Pc.e.(Nch = 2) � 1 at

z � 1):

ωchg.c.e.
∼=

Pg.c.e.(1) · 12 − [Pg.c.e.(1) · 1]2

Pg.c.e.(1) · 1
∼= 1 , (114)

ωchc.e.
∼=

Pc.e.(2) · 22 − [Pc.e.(2) · 2]2 − [Pc.e.(2) · 2]2

Pc.e.(2) · 2
∼= 2 . (115)

In the large z limit the average number of charge particles 〈Nch〉 and its scaled variance

ωch in the g.c.e. , Eqs. (106) and (109), are equal to those in the c.e. , Eqs. (107) and

(112). Nevertheless the corresponding probability distributions are different, see Fig. 7. This is

because all odd multiplicities are excluded in CE as a consequence of the charge conservation.

The relation between Pg.c.e.(Nch) (110) and Pc.e.(Nch) (113) for the large system (z � 1) can

be established as follows. Let us introduce the probability distribution P ∗(Nch) defined as

P ∗(Nch) ≡ C · Pg.c.e.(Nch) , Nch = 0, 2, 4, . . . , (116)

P ∗(Nch) ≡ 0 , Nch = 1, 3, 5, . . . , (117)

where the constant C is given by a normalization condition

1 =
∑

Nch=0,2,4,...

P ∗(Nch) ≡ C ·
∑

Nch=0,2,4,...

Pg.c.e.(Nch) (118)

= C · exp(−2z)
∞∑
n=0

(2z)2n

(2n)!
= C · exp(−2z) cosh(2z) .
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Figure 8: Left: Multiplicity distributions of Nch for z = 10 in the g.c.e. and c.e. . Right:

Multiplicity distributions Pc.e.(Nch) (113) and P ∗(Nch) (116) for z = 10.

Using Eq. (118) one gets C = 2 · [1+exp(−4z)]−1 ∼= 2 for z � 1. The origin of the result C ∼= 2

is the fact that

Pg.c.e.(Nch + 1) ≡ Pg.c.e.(Nch) ·
2z

Nch + 1
∼= Pg.c.e.(Nch) , (119)

for Nch close to its average value 〈Nch〉g.c.e. = 2z � 1, i.e. if the odd numbers Nch = 1, 3, 5, . . .

are forbidden the probabilities Pg.c.e.(Nch) for the even numbers Nch = 0, 2, 4, . . . should be

approximately doubled to have a correct normalization for P ∗(Nch) (116).

Using the Stirling formula, n! ∼= nne−n
√

2πn, valid for n � 1, one finds that Pc.e.(Nch) ∼=

P ∗(Nch) for Nch close to its average value equal to 2z � 1. Both distributions are plotted in
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Fig. 8 for a comparison.
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