High energy density physics and

relativistic nucleus-nucleus collisions

M.I. Gorenstein (BITP, KieV)

- 1. Matter from elementary particles 1950
- 2a. Quark Model
- 2b. Limiting Temperature of Fireballs 1965
- 3. Phase Transitions in the Gas of Bags 1980
- 4. Onset of Deconfinement 2000
- 5. QCD critical point 2015

Summary

I. Matter from Elementary Particles

- p proton="first", Rutherford ,1920
- n Chadwick, 1932 (Nobel Prize 1935)
- π^+, π^-, π^o Powell, 1947, cosmic rays; Yukawa (NP 1949), Powell (NP 1950)
 - K, Λ strange hadrons, cosmic rays, 1947
 - *p* antiproton predicted by Dirac in his 1933 NP lecture, discovered by Serge and Chamberlain in 1955 (NP in 1959)
 - In 1960 about of several tens of strongly interacting particles (hadrons) were known

HADRONS Lev Oku

Lev Okun 1962

1953, Landau – Hydrodynamical Model
Izv. Akad. Nauk (1953)
$$p = \frac{1}{3}\varepsilon, \qquad \varepsilon = \sigma T^4$$
1. Ideal Gas 2. $m \ll T$
Units: $\hbar = c = k = 1$ 1fm=10⁻¹³cm, 1fm/c=10⁻²³sec

 $m_{\pi} = 140 \text{ MeV}, \quad m_{p} = 940 \text{ MeV}, \quad 1 \text{ fm} \simeq -\frac{1}{2}$ 200 MeV E. Beth and G.E. Uhlenbeck, Physica (1937), calculated the level density for interacting particles. They derived an expression for this density which describes the interaction by the scattering phase shifts.

S.Z. Belenkij, Nucl. Phys. (1956), proposed to treat hadronic resonances exactly like stable particles in phase space calculations.

R. Dashen, S. Ma, and H.J. Bernstein, Phys. Rev. (1969), S-matrix formulation of statistical mechanics.

II. Limiting Temperature

$$Z(T,V;m) = \sum_{N=0}^{\infty} \frac{V^N}{N!} \int_0^{\infty} \frac{k_1^2 dk_1}{2\pi^2} \exp\left(-\frac{\sqrt{k_1^2 + m^2}}{T}\right) \dots \qquad \begin{array}{l} \text{Relativistic, Ideal,} \\ \text{Boltzmann, Multi-Component, Gas} \\ \dots \int_0^{\infty} \frac{k_N^2 dk_N}{2\pi^2} \exp\left(-\frac{\sqrt{k_N^2 + m^2}}{T}\right) = \exp\left(\frac{V m^2 T K_2(m/T)}{2\pi^2}\right) \\ = \exp\left(\overline{N}(T,m)\right), \end{array}$$

$$Z(T,V;m_1,...,m_L) = \prod_{j=1}^{L} Z(T,V;m_j) = \exp\left[\overline{N}(T,m_1)\right] \times ...$$
$$\times \exp\left[\overline{N}(T,m_L)\right] = \exp\left[\sum_{j=1}^{L} \overline{N}(T,m_j)\right] = \exp\left[\sum_{0}^{\infty} dm\rho(m) \ \overline{N}(T,m)\right]$$

$$Z(T,V) = \exp\left[\int_{0}^{\infty} dm \ \rho(m) \ \frac{V}{2\pi^{2}} \ m^{2}T \ K_{2}\left(\frac{m}{T}\right)\right]$$

$$\rho\left(m\right) = C \ m^{-a} \ \exp\left(\frac{m}{T_{H}}\right)$$

$$p(T) = \frac{T\ln Z}{V} = T \int_{M_{0}}^{\infty} dm \ \rho(m) \ \left(\frac{mT}{2\pi}\right)^{3/2} \exp\left(-\frac{m}{T}\right) \propto \ \left(T_{H} - T\right)^{a-5/2}$$

$$\varepsilon(T) = T \ \frac{dp}{dT} - p \ \propto \ \left(T_{H} - T\right)^{a-7/2}$$

$$At \ T \to T_{H}: \quad p, \ \varepsilon \to \infty, \text{ for } a \le \frac{5}{2}$$

$$p \to const, \ \varepsilon \to const, \text{ for } a > \frac{7}{2}$$

Transverse momentum spectra

 $T_{_{\rm H}}$ must govern the transverse momentum spectra of outgoing final particles in high energy collisions:

$$\frac{dN}{dp_T} \propto \exp\left(-\frac{\sqrt{p_T^2 + m^2}}{T_H}\right)$$

 $T_H = 158 \pm 3 \text{ MeV}$

 $T_{H} = 160 \pm 5 \text{ MeV} \approx 1.7 \times 10^{12} \, {}^{0}K$

this estimate was used in further publications

 $T_H = 158 \text{ MeV}$ R. Hagedorn (1965)

p_T spectra

R. Hagedorn and J. Ranft, Suppl. Nuovo Cim. (1968); R. Hagedorn, Suppl. Nuovo Cim. (1968), Nuovo Cim. (1967, 1968).

R. Hagedorn, "Remarks on the Thermodynamical Model of Strong Interactions", Nucl. Phys. B (1970).

A firebal is

a statistical equilibrium of undetermined numbers of fireballs, each of which, in turn, is considered to be ...

New philosophy: If quarks exist as real free particles then the hadron mass contains states with non-integer charge and baryon number; if they do not exist as free particles, then the hadron spectrum does not contains such states. In both cases quarks need not be considered more elementary than other hadrons, they are just members of the family

G. Veneziano, Nuovo Cim. (1968), dual resonance model (Veneziano model), Exponentially increasing mass spectrum, Strings (1020 citations)

Fireballs=Strings

T_H is a limiting temperature in the Hadron World

From fitting the data on hadron multiplicities within statistical model, Becattini arXiv:0901.3643 [hep-ph]

Bogolyubov Institute for Theoretical Physics National Academy of Sciences of Ukraine

May 16-17, 2013, Kiev

COLOR OF QUARKS

Workshop in memory of Boris V. STRUMINSKY (14.08.1939 – 18.01.2003)

Topics:

- Quark model of structure and hadron interaction
- Quantum chromodynamics and standard model of elementary particles
- Collective properties of nuclear matter

Relatives, friends, and colleagues are welcome!

For further information, please contact:	COLOR OF QUARKS Bogolyubov Institute for Theoretical Physics 14-b Metrolohichna str.	<u>color@bitp.kiev.ua</u> Tel: (+38044) 5213478
piease contact.	03680 Kiev-143, Ukraine	Fax: (+38044) 5265998

THE STANDARD MODEL

III. Phase Transitions in the Gas of Bags

$$\rho(m) = C \ m^{-a} \exp\left(\frac{m}{T_{H}}\right)$$

100

(*m*,*v*) M.I.G., Petrov, and Zinovjev, Phys. Lett. B (1981) $\rho(m,v) = Cv^{\gamma}(m-Bv)^{\delta} \exp\left[\frac{4}{3}\sigma^{1/4}v^{1/4}(m-Bv)^{3/4}\right]$

Quark Gluon Plasma

Phase Transition in the Gas Bags

$$\hat{Z}(T,s) = \int_0^\infty dV \exp(-sV) Z(T,V) = \frac{1}{s - f(T,s)}$$

$$f(T,s) = \left(\frac{T}{2\pi}\right)^{3/2} \int dm dv \ m^{3/2} \rho(m,v) \exp\left(-\frac{m}{T}\right) \ \exp(-sv)$$

$$p(T) = Ts^*(T) = T \max\{s_H(T), s_Q(T)\}$$

$$Z(T,V) = \exp\left[\frac{p(T) V}{T}\right]$$

 s^* is the farthest-right singularity of $\hat{Z}(T,s)$: $p(T) = Ts^*(T)$ $s_H = f(T, s_H), \qquad f(T, s_Q)$ $\gamma + \delta < -3$, $\delta < -7/4$ conditions for the PTs

$$p(T) = Ts_{Q}(T) = \frac{\sigma}{3}T^{4} - B$$
$$HG \rightarrow QGP$$

M.I.G., Zinovjev, Petrov, and Shelest, Teor. Mat. Fiz. (1982) M.I.G. Yad. Fiz. (1984)

1st order PT

M.I.G., W. Greiner, and Shin Nan Yang, J. Phys. G (1998)

2nd order PT

M.I.G., Gazdzicki, and W. Greiner, Phys. Rev. C (2005)

Higher order PTs

Hadron-Resonance-Bag Gas

Quark Gluon Plasma

 $T_3 = T_c^{(2)}$

 T_1

 T_2

 T_4

Nucleus-Nucleus Collisions

-		E (GeV)	S ^{1/2} (GeV)	
	AGS BNL Au+Au 1980 – 1990	2 <u>→</u> 11	23 ± 47	Alternative Gradient
	SPS CERN Pb+Pb 1990 - 2000	160	17 4	Super Gradient
	2000 2002	40, 80 30	8.3, 12.3 7.6	NA 49
	2003 2010	20 10 ÷160	6.3	 NA 61
Relativistic Heavy Ion	RHIC BNL Au+Au 2000 –		200 8 ÷ 200	2000-2010 2010, STAR
Large Hadron Collider	LHC CERN Pb+Pb 2010		2760	ALICE 19

QGP discovery 2000

1). J/psi Suppression - Matsui, Satz (1986)

$$\left[\frac{N_{J/\psi}}{N_{e^+e^-}^{DY}}\right]_{AA} < \left[\frac{N_{J/\psi}}{N_{e^+e^-}^{DY}}\right]_{pp}$$

2). Strangeness Enhancement - Koch, Muller, Rafelsky (1986).

$$\left[\frac{N_K}{N_\pi}\right]_{AA} > \left[\frac{N_K}{N_\pi}\right]_{pp}$$

3). Photon and Lepton Thermal Production 4).....

Strangeness Enhancement

Statistical Model of Early Stage

Gazdzicki and M.I.G., Acta Phys. Pol. (1998)

Experimental Data in 1998

$$\langle \boldsymbol{n} \rangle = \frac{\boldsymbol{g} V}{\left(2 \pi\right)^3} \int \boldsymbol{d}^3 \boldsymbol{p} \; \frac{1}{\boldsymbol{e}^{E/T} \pm 1}$$

$$\approx g V \frac{2 \pi^2}{4 \cdot 45} T^3 \qquad \text{for light particles}$$
$$\approx g V \left(\frac{MT}{2\pi}\right)^{3/2} e^{-M/T} \quad \text{for heavy particles}$$

The Horn: Pb+Pb

The Horn: Pb+Pb vs p+p

The Step: Pb+Pb

Phys.Rev. C66 (2002) 054902 Phys.Rev. C77 (2008) 024903

The Step: Pb+Pb vs p+p

arXiv:1502.07916 [nucl-ex]

RHIC discovery

Lacey et al. Phys.Rev.Lett.98:092301 - H20 Data - RHIC QGP 3 son gas Data J s/L 0 -1.0 -0.5 0.0 T.(, T-T) 0.5 1.0

Au+Au

$$\sqrt{s_{NN}} = 200 \text{ GeV}$$

QGP = Ideal Liquid (almost)

shear viscosity

$$\frac{\eta}{s} \cong 0.1 \ge \frac{1}{4\pi}$$
 the lowest limit

entropy density

V. QCD Critical Point

1st Order Phase Transition

SPS CERN, NA61/SHINE: the data taking plan

Summary

Experiments:

NICA, Dubna	2020
SIS, GSI	2020
SPS, CERN NA61/SHINE	2009
RHIC, BNL STAR	2010

Thank You !

main strangeness carriers

sensitive to strangeness content only
sensitive to strangeness content and baryon density

QGP discovery 2000

1). J/psi Suppression - Matsui, Satz (1986)

$$\left[\frac{N_{J/\psi}}{N_{e^+e^-}^{DY}}\right]_{AA} < \left[\frac{N_{J/\psi}}{N_{e^+e^-}^{DY}}\right]_{pp}$$

2). Strangeness Enhancement - Koch, Muller, Rafelsky (1986).

$$\left[\frac{N_K}{N_\pi}\right]_{AA} > \left[\frac{N_K}{N_\pi}\right]_{pp}$$

3). Photon and Lepton Thermal Production 4).....

Strangeness Enhancement

Limiting Temperature (short summary)

$$\rho(m) = C \ m^{-a} \exp\left(\frac{m}{T_{H}}\right) \quad \text{for} \quad m \to \infty$$

$$p(T) = T \int_{M_{0}}^{\infty} dm \ \rho(m) \left(\frac{mT}{2\pi}\right)^{3/2} \exp\left(-\frac{m}{T}\right) \propto \left(T_{H} - T\right)^{a-5/2}$$

$$\varepsilon(T) = T \frac{dp}{dT} - p \propto \left(T_{H} - T\right)^{a-7/2}$$

$$\text{At } T \to T_{H} : \quad p, \ \varepsilon \to \infty, \text{ for } a \le \frac{5}{2}$$

$$p \to const, \ \varepsilon \to \infty, \text{ for } \frac{5}{2} < a \le \frac{7}{2}$$

$$p \to const, \ \varepsilon \to const, \text{ for } a > \frac{7}{2}$$

$$Z(T,V) = \sum_{N=0}^{\infty} \left(\frac{V}{2\pi^2} \int_{M_0}^{\infty} dm \int_0^{\infty} k^2 dk \ \rho(m) \exp\left(-\sqrt{k^2 + m^2}\right) / T \right)^N \frac{1}{N!}$$

= $\exp\left[\frac{VT}{2\pi^2} \int_{M_0}^{\infty} dm \ \rho(m) \ m^2 \ K_2(m/T) \right]$

$$V \to \left(V - \sum_{i=1}^{N} v_i \right)$$

$$\rho(m) \to \rho(m, v) = \rho_0 + C v^{\gamma} (m - B v)^{\delta} \exp\left[\frac{4}{3}\sigma^{1/4} v^{1/4} (m - B v)^{3/4}\right]$$

-

$$Z(T,V) = \sum_{N=0}^{\infty} \frac{1}{N!} \left(\prod_{i=1}^{N} \int_{M_0}^{\infty} dm_i \int_{V_0}^{\infty} dv_i \left(V - v_1 - \dots - v_N \right) \rho(m_i, v_i) K_2\left(\frac{m_i}{T}\right) \right)$$