

#### UiO **Department of Physics** University of Oslo

#### Observing the\* Higgs boson

Alex Read (U.Oslo)

**Oslo Winter School 2018** 

Skeikampen, Norway







#### Outline

Recap SM, Higgs boson production @ LHC
ATLAS and CMS experiments
Discovery of the Higgs boson

## The Higgs boson.... ...an integral part of the SM

Renormalizable relativistic QFT with local gauge invariance U(1)<sub>Y</sub>xSU(2)<sub>L</sub>xSU(3)<sub>C</sub>

Success of QED, high-energy behaviour of 4-fermion weak interactions, drives electroweak unification to propose massive gauge bosons (confirmed e.g. at CERN in 1980's and indirectly in the 70's)

 Higgs/BEH/GABEGHHK'tH-mechanism breaks gauge symmetry in the vacuum state – W-S EW (G) model

$$\mathcal{I} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

$$+ i\Psi \mathcal{Y} \mathcal{Y} \mathcal{Y} \mathcal{Y} \mathcal{Y} \mathcal{Y}$$

$$+ |\nabla_{\mu}\Phi|^{2} - \vee(\Phi)$$
Quarks
$$\mathcal{I} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

 $(\phi) = \mu^2 (\phi^{\dagger} \phi) \perp \lambda (\phi^{\dagger} \phi)^2$ 

$$= \frac{e}{\sin \theta_w}, \ m_W = \frac{gv}{\sqrt{2}}, \ m_Z = \frac{m_W}{\cos \theta_W}$$
$$m_H^2 = -2\mu^2$$
$$m_f = \frac{vg_f}{\sqrt{2}}, \ \Gamma_f \sim m_f^2 * n_c$$

 $\sqrt{2}$ 

9

# Higgs production @ LHC



Oslo Winter School 2018

4

## From m<sub>H</sub> to branching fractions



Oslo Winter School 2018

## From m<sub>H</sub> to branching fractions



Oslo Winter School 2018

# ATLAS, CMS collaborations



## CMS, ATLAS experiments



| CMS      | ATLAS   |
|----------|---------|
| 14 ktons | 7 ktons |
| B=3.8 T  | B=2 T   |
| 15x29 m  | 22x45 m |

CMS: Compact, high sol. field, all-Si tracker, crystal ECAL



#### ATLAS: Air-core toriod, accordian LAr

ECAL



#### ATLAS-experiment

Electrons (stable) Muons (effectively stable, *why*?!) Tau-leptons (from decay products) Jets (from quarks and gluons) Missing transverse momentum (*why*?!) (*neutrinos, new physics e.g. SUSY*)



#### 7000 tonn (~100 tomme Boeing 747er)



90 M 3-D pixels 400 "pictures"/s Toss 20 Mpics/s Save some 1000 TB/yr

D



#### CMS



### $\tau$ -lepton

Citation: C. Patrignani et al. (Partide Data Group), Chis. Phys. C, 40, 100001 (2016)

µ<sup>+</sup> modes are charge conjugates of the modes below.

| - DECAY MODES                                |             | Fraction (      | Γ <sub>i</sub> /Γ)     | Confidence level | (MeV/c) |
|----------------------------------------------|-------------|-----------------|------------------------|------------------|---------|
| $e^- \nu_e \nu_\mu$                          |             | $\approx 100\%$ |                        |                  | 53      |
| $e^- \overline{\nu}_e \nu_\mu \gamma$        |             | [d] (1.4±0      | .4) %                  |                  | 53      |
| $e^- \overline{\nu}_e \nu_\mu e^+ e^-$       |             | [e] (3.4±0      | .4) × 10 <sup>-5</sup> |                  | 53      |
| Lepto                                        | n Family nu | mber (LF)       | violating r            | nodes            |         |
| $e^- \nu_e \overline{\nu}_\mu$               | LF          | [f] < 1.2       | %                      | 90%              | 53      |
| e <sup>-</sup> γ                             | LF          | < 5.7           | $\times 10^{-13}$      | 3 90%            | 53      |
| e <sup>-</sup> e <sup>+</sup> e <sup>-</sup> | LF          | < 1.0           | $\times 10^{-12}$      | 2 90%            | 53      |
| e <sup></sup> 2γ                             | LF          | < 7.2           | $\times 10^{-13}$      | 1 90%            | 53      |

 $\tau$ 

 $J = \frac{1}{2}$ 

 $\begin{array}{l} {\rm Mass} \ m = 1776.86 \pm 0.12 \ {\rm MeV} \\ (m_{\tau^+} - m_{\tau^-})/m_{\rm average} \ < \ 2.8 \times 10^{-4}, \ {\rm CL} = 90\% \\ {\rm Mean} \ {\rm life} \ \tau = (290.3 \pm 0.5) \times 10^{-15} \ {\rm s} \\ c\tau = 87.03 \ \mu {\rm m} \\ {\rm Magnetic} \ {\rm moment} \ {\rm anomaly} > -0.052 \ {\rm and} < 0.013, \ {\rm CL} = 95\% \\ {\rm Re}(d_{\tau}) = -0.220 \ {\rm to} \ 0.45 \times 10^{-16} \ {\rm e\,cm}, \ {\rm CL} = 95\% \\ {\rm Im}(d_{\tau}) = -0.250 \ {\rm to} \ 0.0080 \times 10^{-16} \ {\rm e\,cm}, \ {\rm CL} = 95\% \end{array}$ 

#### Weak dipole moment

 $\operatorname{Re}(d_{\tau}^{w}) < 0.50 \times 10^{-17} e \,\mathrm{cm}, \, \operatorname{CL} = 95\%$  $\operatorname{Im}(d_{\tau}^{w}) < 1.1 \times 10^{-17} e \,\mathrm{cm}, \, \operatorname{CL} = 95\%$ 

#### Weak anomalous magnetic dipole moment

Re( $\alpha_{\tau}^{w}$ ) < 1.1 × 10<sup>-3</sup>, CL = 95% Im( $\alpha_{\tau}^{w}$ ) < 2.7 × 10<sup>-3</sup>, CL = 95%  $\tau^{\pm} \rightarrow \pi^{\pm} K_{S}^{0} \nu_{\tau}$  (RATE DIFFERENCE) / (RATE SUM) = (-0.36 ± 0.25)%

#### Decay parameters

See the  $\tau$  Particle Listings for a note concerning  $\tau$ -decay parameters.

 $\begin{aligned} \rho(e \text{ or } \mu) &= 0.745 \pm 0.008\\ \rho(e) &= 0.747 \pm 0.010\\ \rho(\mu) &= 0.763 \pm 0.020\\ \xi(e \text{ or } \mu) &= 0.985 \pm 0.030\\ \xi(e) &= 0.994 \pm 0.040\\ \xi(\mu) &= 1.030 \pm 0.059\\ \eta(e \text{ or } \mu) &= 0.013 \pm 0.020\\ \eta(\mu) &= 0.094 \pm 0.073 \end{aligned}$ 

Citation: C. Patsignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

 $(\delta\xi)(e \text{ or } \mu) = 0.746 \pm 0.021$   $(\delta\xi)(e) = 0.734 \pm 0.028$   $(\delta\xi)(\mu) = 0.778 \pm 0.037$   $\xi(\pi) = 0.993 \pm 0.022$   $\xi(\rho) = 0.994 \pm 0.008$   $\xi(a_1) = 1.001 \pm 0.027$  $\xi(\text{all hadronic modes}) = 0.995 \pm 0.007$ 

 $\tau^+$  modes are charge conjugates of the modes below. " $h^{\pm}$ " stands for  $\pi^\pm$  or  $K^\pm$ . " $\ell$ " stands for e or  $\mu$ . "Neutrals" stands for  $\gamma$ 's and/or  $\pi^0$ 's.

|                            |  |  | (5.15)   | Scale factor/       | р                |         |
|----------------------------|--|--|----------|---------------------|------------------|---------|
| τ <sup>-</sup> DECAY MODES |  |  | Fraction | $(\Gamma_i/\Gamma)$ | Confidence level | (MeV/c) |
|                            |  |  |          |                     |                  |         |

| Modes with                                                                  |     | e charge | ea p    | artic | le                        |      |
|-----------------------------------------------------------------------------|-----|----------|---------|-------|---------------------------|------|
| particle <sup>-</sup> $\geq$ 0 neutrals $\geq$ 0K <sup>0</sup> $\nu_{\tau}$ |     | (85.24   | ±       | 0.06  | )%                        | -    |
| ("1-prong")                                                                 |     |          |         |       |                           |      |
| particle <sup>-</sup> $\geq$ 0 neutrals $\geq$ 0 $K_L^0 \nu_{\tau}$         |     | (84.58   | ±       | 0.06  | )%                        | -    |
| $\mu^- \overline{\nu}_\mu \nu_\tau$                                         | [g] | (17.39   | ±       | 0.04  | )%                        | 885  |
| $\mu^- \overline{\nu}_\mu \nu_\tau \gamma$                                  | [e] | ( 3.68   | ±       | 0.10  | $) \times 10^{-3}$        | 885  |
| $e^- \overline{\nu}_e \nu_{\tau}$                                           | [g] | (17.82   | ±       | 0.04  | )%                        | \$88 |
| $e^- \overline{\nu}_e \nu_\tau \gamma$                                      | [e] | ( 1.84   | ± 1     | 0.05  | )%                        | \$88 |
| $h^- \ge 0 K_L^0 \nu_{\tau}$                                                |     | (12.03   | ±       | 0.05  | )%                        | 883  |
| $h^- \nu_{\tau}$                                                            |     | (11.51   | $\pm$   | 0.05  | )%                        | 883  |
| $\pi^- \nu_{\tau}$                                                          | [g] | (10.82   | $\pm 1$ | 0.05  | )%                        | 883  |
| $K^- \nu_{\tau}$                                                            | [g] | ( 6.96   | ±       | 0.10  | ) × 10 <sup>-3</sup>      | 820  |
| $h^- \ge 1$ neutrals $\nu_{\tau}$                                           |     | (37.00   | ±       | 0.09  | )%                        | -    |
| $h^{-} \ge 1\pi^{0}\nu_{\tau}(ex.K^{0})$                                    |     | (36.51   | ±       | 0.09  | )%                        | -    |
| $h^- \pi^0 \nu_{\tau}$                                                      |     | (25.93   | ±       | 0.09  | ) %                       | \$78 |
| $\pi^-\pi^0\nu_{\tau}$                                                      | [g] | (25.49   | ±       | 0.09  | )%                        | \$78 |
| $\pi^{-}\pi^{0}$ non- $\rho(770)\nu_{\tau}$                                 |     | ( 3.0    | ±       | 3.2   | ) × 10 <sup>-3</sup>      | \$78 |
| $K^{-}\pi^{0}\nu_{\tau}$                                                    | [g] | ( 4.33   | ±       | 0.15  | ) × 10 <sup>-3</sup>      | 814  |
| $h^- \ge 2\pi^0 \nu_\tau$                                                   |     | (10.81   | ±       | 0.09  | )%                        | -    |
| $h^- 2\pi^0 \nu_{\tau}$                                                     |     | ( 9.48   | $\pm$   | 0.10  | )%                        | 862  |
| $h^{-}2\pi^{0}\nu_{\tau}$ (ex. $K^{0}$ )                                    |     | ( 9.32   | ±       | 0.10  | )%                        | 862  |
| $\pi^{-}2\pi^{0}v_{\tau}(\text{ex.}K^{0})$                                  | [g] | ( 9.26   | ±       | 0.10  | )%                        | 862  |
| $\pi^{-}2\pi^{0}v_{\tau}(ex.K^{0}),$                                        |     | < 9      |         |       | $\times 10^{-3}$ CL=95%   | 862  |
| $\pi^{-\frac{\text{scalar}}{2\pi^0}}v_{\tau}(\text{ex}.K^0),$               |     | < 7      |         |       | × 10 <sup>-3</sup> CL=95% | 862  |
| vector                                                                      |     |          |         |       |                           |      |
| $K^{-}2\pi^{0}\nu_{\tau}(ex.K^{0})$                                         | [g] | ( 6.5    | ± :     | 2.2   | ) × 10 <sup>-4</sup>      | 796  |
| $h^- \ge 3\pi^0 \nu_\tau$                                                   |     | ( 1.34   | ±       | 0.07  | )%                        | -    |
| $h^{-} \geq 3\pi^{0} \nu_{\tau}(\text{ex. } K^{0})$                         |     | ( 1.25   | ±       | 0.07  | )%                        | -    |
| $h^{-}3\pi^{0}\nu_{T}$                                                      |     | ( 1.18   | ±       | 0.07  | )%                        | \$36 |
| $\pi^{-} 3\pi^{0} v_{\tau}$ (ex. $K^{0}$ )                                  | [g] | ( 1.04   | ±       | 0.07  | )%                        | 836  |
|                                                                             |     |          |         |       |                           |      |

Page 3

### $\tau$ -lepton

Citation: C. Patrignani et al. (Particle Data Group), Chis. Phys. C, 40, 100001 (2016)

µ<sup>+</sup> modes are charge conjugates of the modes below.

| µ <sup>−</sup> DECAY MODES                   | I           | Fraction (Γ <sub>i</sub> /Γ) | Confidence level | (MeV/c) |
|----------------------------------------------|-------------|------------------------------|------------------|---------|
| $e^- \nu_e \nu_\mu$                          | :           | ≈ 100%                       |                  | 53      |
| $e^- \overline{\nu}_e \nu_\mu \gamma$        | [ď]         | (1.4±0.4) %                  |                  | 53      |
| $e^-\overline{\nu}_e \nu_\mu e^+e^-$         | [e]         | $(3.4\pm0.4)	imes10$         | -5               | 53      |
| Lepton Fa                                    | amily numbe | er ( <i>LF</i> ) violatin    | g modes          |         |
| $e^- \nu_e \overline{\nu}_\mu$               | LF [f]      | < 1.2 %                      | 90%              | 53      |
| e-γ                                          | LF          | < 5.7 × 10                   | -13 90%          | 53      |
| e <sup>-</sup> e <sup>+</sup> e <sup>-</sup> | LF          | < 1.0 × 10                   | -12 90%          | 53      |
| $e^- 2\gamma$                                | LF          | < 7.2 × 10                   | -11 90%          | 53      |

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

 $(\delta\xi)(e \text{ or } \mu) = 0.746 \pm 0.021$   $(\delta\xi)(e) = 0.734 \pm 0.028$   $(\delta\xi)(\mu) = 0.778 \pm 0.037$   $\xi(\pi) = 0.993 \pm 0.022$   $\xi(\rho) = 0.994 \pm 0.008$   $\xi(a_1) = 1.001 \pm 0.027$  $\xi(\text{all hadronic modes}) = 0.995 \pm 0.007$ 

 $\tau^+$  modes are charge conjugates of the modes below. " $h^{\pm}$ " stands for  $\pi^\pm$  or  $K^\pm$ . " $\ell$ " stands for e or  $\mu$ . "Neutrals" stands for  $\gamma$ 's and/or  $\pi^0$ 's.

| $\tau^-$ DECAY MODES | Fraction $(\Gamma_i/\Gamma)$ | Confidence level | (MeV/c |
|----------------------|------------------------------|------------------|--------|
|                      |                              | Scale factor/    | P      |

|                                                                                                         | Modes with                                                          | in one charge | u particie                             |          |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|----------------------------------------|----------|
| $T$ $J = \frac{1}{2}$                                                                                   | particle <sup>-</sup> $\geq$ 0 neutrals $\geq$ 0 $K^0 \nu_{\tau}$   | (85.24        | ± 0.06)%                               | -        |
|                                                                                                         | ("1-prong")                                                         |               |                                        |          |
| Mass $m = 1776.86 \pm 0.12$ MeV                                                                         | particle <sup>-</sup> $\geq$ 0 neutrals $\geq$ 0 $K_L^0 \nu_{\tau}$ | (84.58        | ± 0.06)%                               | -        |
| $(m_{\pi^+} - m_{\pi^-})/m_{\rm average} < 2.8 \times 10^{-4}, CL = 90\%$                               | $\mu^- \overline{\nu}_\mu \nu_\tau$                                 | [g] (17.39    | ± 0.04 )%                              | 885      |
| Mean life $\tau = (290.3 \pm 0.5) \times 10^{-15}$ s                                                    | $\mu^- \overline{\nu}_\mu \nu_\tau \gamma$                          | [e] ( 3.68    | $\pm$ 0.10 ) $\times$ 10 <sup>-3</sup> | 885      |
| $c\tau = 87.03 \ \mu m$                                                                                 | $e^- \overline{\nu}_e \nu_{\tau}$                                   | [g] (17.82    | ± 0.04 )%                              | 888      |
| Magnetic moment anomaly $> -0.052$ and $< 0.013$ , CL = 95%                                             | $e^-\overline{\nu}_e \nu_{\tau} \gamma$                             | [e] ( 1.84    | ± 0.05)%                               | 888      |
| $\operatorname{Re}(d_{\tau}) = -0.220 \text{ to } 0.45 \times 10^{-16} \text{ e cm}, \text{ CL} = 95\%$ | $h^- \ge 0 K_L^0 \nu_\tau$                                          | (12.03        | ± 0.05)%                               | \$83     |
| $Im(d_{\tau}) = -0.250$ to $0.0080 \times 10^{-16}$ e cm, $CL = 95\%$                                   | $h^- \nu_7$                                                         | (11.51        | ± 0.05)%                               | 883      |
| West disale moment                                                                                      | $\pi^- \nu_{\tau}$                                                  | [g] (10.82    | ± 0.05)%                               | 883      |
|                                                                                                         | $K^- \nu_{\tau}$                                                    | [g] ( 6.96    | $\pm$ 0.10 ) $\times$ 10 <sup>-3</sup> | \$20     |
| $\operatorname{Re}(d_{\tau}^{w}) < 0.50 \times 10^{-17} e \mathrm{cm}, \mathrm{CL} = 95\%$              | $h^- \ge 1$ neutrals $\nu_r$                                        | (37.00        | ± 0.09)%                               | -        |
| $Im(d_{\tau}^{w}) < 1.1 \times 10^{-17} e \text{ cm}, \text{ CL} = 95\%$                                | $h^- \geq 1\pi^0  u_	au$ (ex. $\mathcal{K}^0$ )                     | (36.51        | ± 0.09)%                               | -        |
| Weak anomalous magnetic dipole moment                                                                   | $h^- \pi^0 \nu_{\overline{b}}$                                      | (25.93        | ± 0.09 ) %                             | \$78     |
| $\text{Re}(\alpha^{W}) < 1.1 \times 10^{-3} \text{ CL} = 95\%$                                          | $\pi^- \pi^0 \nu_{\tau}$                                            | [g] (25.49    | ± 0.09)%                               | \$78     |
| $lm(\alpha_{\tau}^{W}) < 2.7 \times 10^{-3}$ CL = 95%                                                   | $\pi^{-}\pi^{0}$ non- $\rho(770)\nu_{\tau}$                         | ( 3.0         | $\pm 3.2$ ) × 10 <sup>-3</sup>         | 878      |
| $\tau^{\pm} \rightarrow \tau^{\pm} K_{\mu\nu}^{0}$ (BATE DIFFERENCE) / (BATE SUM) =                     | $K^{-}\pi^{\circ}\nu_{\tau}$                                        | [g] (4.33     | $\pm$ 0.15 ) × 10 <sup>-3</sup>        | 814      |
| $(-0.36 \pm 0.25)\%$                                                                                    | $h^- \geq 2\pi^{\circ}\nu_{\tau}$                                   | (10.81        | ± 0.09 )%                              | -        |
| - And 6 more                                                                                            | $n_{n} = 0$                                                         | (9.48         | ± 0.10 )%                              | 862      |
| Decay parameters                                                                                        | $\pi^{-2\pi^{0}}\mu$ (ex. K <sup>0</sup> )                          | (9.32         | ± 0.10 ) %                             | 802      |
| See the $\tau$ Particle Listings for a note concerning $\tau$ -decay parameters.                        | $\pi^{-2}\pi^{-0}\nu_{\tau}(ex.K^{-1})$                             | [8] (9.20     | ± 0.10 ) %                             | 802      |
| $a(a \text{ or } u) = 0.745 \pm 0.008$                                                                  | $n \ge n + \frac{1}{2} (ex. r),$                                    | ~ *           | X 10 -CL=9576                          | 902      |
| $\rho(e) = 0.747 \pm 0.010$                                                                             | $\pi^{-2}\pi^{0}\nu_{\tau}$ (ex. $K^{0}$ ),                         | < 7           | × 10 <sup>-3</sup> CL=95%              | 862      |
| $p(c) = 0.763 \pm 0.020$                                                                                | vector                                                              |               |                                        |          |
| $f(\mu) = 0.005 \pm 0.020$<br>$f(\mu) = 0.985 \pm 0.030$                                                | $K^{-}2\pi^{0}\nu_{\tau}(ex.K^{0})$                                 | [g] (6.5      | $\pm 2.2$ ) $\times 10^{-4}$           | 796      |
| $\xi(e) = 0.994 \pm 0.040$                                                                              | $h^- \ge 3\pi^0 \nu_\tau$                                           | ( 1.34        | ± 0.07)%                               | -        |
| $\xi(\mu) = 1.030 \pm 0.059$                                                                            | $h^{-} \ge 3\pi^{0} \nu_{\tau}$ (ex. K <sup>0</sup> )               | ( 1.25        | ± 0.07 )%                              | _        |
| $r(e \text{ or } \mu) = 0.013 \pm 0.020$                                                                | $n^{-3}\pi^{-5}\nu_{\tau}$                                          | ( 1.18        | ± 0.07 )%                              | 836      |
| $n(\mu) = 0.094 \pm 0.073$                                                                              | $\pi^{-}$ $5\pi^{\circ}\nu_{\tau}$ (ex. $K^{\circ}$ )               | [g] (1.04     | ± 0.07 ) %                             | 836      |
|                                                                                                         |                                                                     |               | _                                      |          |
| HTTP://PDG.LBL.GOV Page 2 Created: 10/1/2016 20:05                                                      | HTTP://PDG.LBL.GOV                                                  | Page 3        | Created: 10/1/201                      | .6 20:05 |

# Quark and gluon "jets"



Simulated event from ATLAS Experiment © 2011 CERN

#### LHC challenge: Find 10<sup>5</sup> Higgs bosons in 10<sup>15</sup> proton-proton-collisions.

#### LHC challenge: Find 10<sup>5</sup> Higgs bosons in 10<sup>15</sup> proton-proton-collisions.



www.shutterstock.com · 736484

#### LHC challenge: Find 10<sup>5</sup> Higgs bosons in 10<sup>15</sup> proton-proton-collisions.



www.shutterstock.com · 736484

#### Results 4 July (\*), 2012



# $\begin{array}{c} H \to Z^0 Z^0 \to e^+ e^- \mu^+ \mu^- \\ \mbox{Which is which?!} & H \to W^+ W^- \to e^+ \nu_e \mu^- \bar{\nu_\mu} \\ & H \to \gamma \gamma \end{array}$

#### Results 4 July (\*), 2012









# $\begin{array}{c} H\to Z^0Z^0\to e^+e^-\mu^+\mu^-\\ \mbox{Which is which?!} \ H\to W^+W^-\to e^+\nu_e\mu^-\bar{\nu_\mu}\\ H\to \gamma\gamma \end{array}$

#### Results 4 July (\*), 2012









# Candidate $H \to \gamma \gamma$



#### Candidate $H \rightarrow ZZ^* \rightarrow (e^+e^-)(\mu^+\mu^-)$



#### Candidate $H \to W^+ W^{-(*)} \to e^+ \nu_e \mu^- \nu_\mu$



## "Invariant mass"

#### We see the Higgs boson as directly as we see each other!



#### $E = mc^2 \rightarrow E^2 = m^2c^4 + p^2c^2$

#### Correlations in $H \rightarrow W^+W^- \rightarrow e^+ \nu_e \mu^- \bar{\nu_\mu}$



Will the electron and muon tend to come out aligned or anti-aligned in the detector?!

# $H \to \gamma \gamma ??$

 H is electrically neutral, photon has only electromagentic interactions. How can H decay to γγ??

# $H \to \gamma \gamma ??$

 H is electrically neutral, photon has only electromagentic interactions. How can H decay to γγ??

MZ

# LHC data samples



# LHC data samples



#### Similar for CMS

## Pile-up challenge



#### Why is this trend a problem?!







#### Standard "candles" /



#### Oslo Winter School 2018

#### July, 2012













# A new boson, "Higgs-like"







- Combination of all channels and data available at the time
- $\odot$  2 experiments with  $5\sigma$  at ~same mass
- The most sensitive channels making the impact



Since July 2012: From "a Higgs-like boson" to "a Higgs boson"

#### Statistics miniworkshop

chaired by Louis Lyons (Imperial College-Unknown-Unknown)

from Wednesday, 13 February 2013 at 08:00 to Thursday, 14 February 2013 at 18:00 (Europe/Zurich) at CERN

#### Description WHAT WE HAVE LEARNT FROM THE LHC HIGGS SEARCH?

BASIC IDEA OF MEETING:

Now that we have actually searched for and found a Higgs-like boson, we should have a small meeting to try to decide what we have learnt about the statistical issues involved, and to consolidate our experience.

- While van Dyk asserted that he would advocate a different quantification of the evidence for a Higgs boson, he acknowledged that the ATLAS and CMS analyses must be among the most rigorous statistical treatments of a complex scientific data set "on the planet".
- Profile-likelihood ratio machinery (RooStats/RooFit/ MINUIT) put us in position to rapidly (!!) advance from limits and discovery to measurements!

## Rest of 2012: The signals grew...



## Rest of 2012: The signals grew...



#### Mass of the Higgs boson (Run 1 data only)

| Expt. | Chan.          | m <sub>H</sub> | stat    | syst    |
|-------|----------------|----------------|---------|---------|
| ATLAS | $\gamma\gamma$ | 126,8          | 0,2     | 0,7     |
| CMS   | $\gamma\gamma$ | 125,4          | 0,5     | 0,6     |
| ATLAS | 41             | 124,3          | 0.6/0.5 | 0.5/0.3 |
| CMS   | <b>4</b> l     | 125,8          | 0,5     | 0,2     |
| ATLAS | Comb           | 125,5          | 0,2     | 0.5/0.6 |
| CMS   | Comb           | 125,7          | 0,3     | 0,3     |

(Optimistic back of the envelope 125.6±0.3)  $m_H = 125.09 \pm 0.21$  (stat.)  $\pm 0.11$  (syst.) GeV

#### Conclusions

Far beyond any reasonable doubt we have started to measure and test in detail the properties of a Higgs boson, which in every way is so far consistent with the minimal SM (J<sup>P</sup>=O+, SM couplings in production and decay, no unexpected invisible decays)