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https://indico.cern.ch/event/666278/
http://www.mn.uio.no/fysikk/english/people/aca/read/index.html


Note: Many clickable links to documentation!
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Real (!) overviews
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http://www.amazon.com/books/dp/0198501552
http://www.amazon.com/Statistics-Nuclear-Particle-Physicists-Louis/dp/0521379342/ref=sr_1_1?s=books&ie=UTF8&qid=1375444428&sr=1-1&keywords=lyons+statistics
http://pdg.lbl.gov/2013/reviews/contents_sports.html
https://indico.cern.ch/conferenceDisplay.py?confId=233551
http://books.google.se/books/about/Statistical_Methods_in_Experimental_Phys.html?id=QbBm2VhV5TQC&redir_esc=y
http://user.pa.msu.edu/linnemann/public/milagro/froedeson.pdf
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2 main approaches
Bayesian - probability(theory|data) 
- well-defined accounting for beliefs 
- prior-probability for the theory must be given  
- prior-dependence should be studied


Frequentist/classical - probability(data|theory) 
- says nothing about probability of theory  
- typically used in HEP to report experimental 
   results “objectively” (as possible) 
- can lead to subset of individual results which are  
   obviously wrong but consistent with methodology
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Bayesian credible 
intervals
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Posterior density 
 for parameter

Marginalizing nuisance

parameters (e.g. data-driven 
backgrounds, systematics)

Interval:

Minimum interval

Highest density

Physical boundry (e.g. 
m≥0)

P (A|B) = P (B|A)
P (A)

P (B)
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Confidence intervals 
(Neyman construction)

Need to know the 
ensemble for 
everyθ0


Multi-dimensional 
space with 
nuisance 
parameters more 
complicated (ugh)
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Exam question (Bob Cousins)

Related question: What is the probability that 
a particular track is a pion?
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Bayes vs. freq.
In many data-dominated situations hardly any difference in 
reported results, eg. MZ=91.1876±0.0021 GeV


But interp. not the same!  
Which is B and which is F?  
1) P(|MZ-91.1876|<0.0021)=68% 
2) 68% of such intervals contain the true MZ


Small data samples, physical boundries typically lead to 
differences


Doing both analyses and studying the differences can give 
insights 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Various likelihoods
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L(n|µ) = e�µµn

n!

L(n|µs+ b) =
e�(µs+b)(µs+ b)n

n!

L(n,m|µs+ b, ⌧) =
e�(µs+b)(µs+ b)n

n!

e�⌧b(⌧b)m

m!

L(x|x0,�) =
1p
2⇡�2

e

� (x�x0)2

2�2

Poisson, counting (no background)

Counting, known bkg

Gaussian

Counting “on/off”

Likelihood ratio of 

marked Poissons in  
combined channels
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Maximum likelihood
Ideal estimators of parameters are unbiased and efficient 
(minimum variance). Not always simultaneously achievable, e.g,  
 

Maximum likelihood (for convenience minimize -ln(L) or even 
-2ln(L)) is approximately unbiased, efficient for large data 
samples and widely applicable.


Wald showed that for a single parameter 
 

Wilks showed that if     is Gauss-distributed about    then
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1-sided p-values in large-sample limit
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= �2 ln
L(µtest)

L(µ̂)
= �2

test � �2
min

N� ��2 1

2
P (�2 > c)

1 1 0,159
2 4 2.3x10-2

3 9 1.3x10-3

4 16 3.2x10-5

5 25 2.9x10-7

Double_t Pvalue(Double_t significance) {

  return ROOT::Math::chisquared_cdf_c(pow(significance,2),1)/2;

}
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Brief (!) history of limits
O. Helene (1983) - Bayesian limit with flat 
prior on signal


G. Zech (1988) - frequentist 
interpretation of Helene 


A. Read (1997) - rederived Zech from 
likelihood ratio and “background 
conditioning”; CLS ≈ “confidence in the 
signal-only hypothesis”


Feldman and Cousins (1998) - auto 2-sided 
frequentist confidence intervals - 
“coverage is king” (but tests 
signal+background hypothesis)


Birnbaum (1961!!) - support for 
CLS in the professional statistics literature 
- rediscovered by O. Vitells


Article links 1, 2, 3
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http://www.sciencedirect.com/science/article/pii/016890028990795X
http://prd.aps.org/abstract/PRD/v57/i7/p3873_1
http://www.jstor.org/discover/10.2307/2237753?uid=3738984&uid=2&uid=4&sid=21102527870823
http://www.jstor.org/discover/10.2307/2281640?uid=3738984&uid=2&uid=4&sid=21102527870823
http://www.jstor.org/discover/10.2307/20115210?uid=3738984&uid=2129&uid=2&uid=70&uid=4&sid=21102527870823
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Origins of CLs
Almost background-less Higgs searches 
at LEP1, many different statistical 
treatments, combination not obvious, 
LEP2 data was coming


I proposed simple LR, frequentist 
approach, CLS invented to deal robustly 
with deficits, combination simply adding 
channels to LR, exclusion with CLs, 
discovery with CLb, never got to ML for 
measurement


Cousins&Highland (hybrid Bayes-
frequentist treatment) for (generally 
small) systematics 
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http://iopscience.iop.org/0954-3899/28/10/313/
http://www.sciencedirect.com/science/article/pii/0168900292907945
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QLEP and CLS 
take hold in 

DELPHI
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http://delphiwww.cern.ch/pubxx/delnote/public/
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CLs
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CLs+b
1-CLb

http://iopscience.iop.org/0954-3899/28/10/313/
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Straightforward LR combination
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Natural combination of channels, extension to 
discriminant (or counting) per channel


Learned later Obraztsov (DELPHI 1992), L3 people 
proposed similar likelihood but Bayes-like integration 
of likelihood (implicit uniform prior).


At LEP eventually 4 experiments, O(10) center of mass 
energies, O(8) search topologies/channels combined

http://www.sciencedirect.com/science/article/pii/016890029290925T
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�2 ln
L(µ, ✓̃)

L(0, ✓̃)

�2 ln
L(µ, ˆ̂✓)

L(0, ✓̂)

�2 ln
L(µ(0), ˆ̂✓)

L(µ̂, ✓̂)

Test statistic
Nuisance  

parameters 
in LR

Randomized 
in toys

Sampling of 
test statistic

QLEP Fixed by MC Nuisance 
parameters

Hybrid 
Bayes-

frequentist

QTev Profiled Nuisance 
parameters

Hybrid 
Bayes-

frequentist
“LHC”

qµ (q0)  Profiled External 

constraints Frequentist

LR from LEP to Tevatron to LHC



Oslo Winter School 2018 A. Read, U. Oslo

Profile likelihood (MINUIT)
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http://xxx.lanl.gov/abs/physics/0403059
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Curiousity: PL considered at LEP times

I abandoned it to avoid 2-sided intervals 
(Feldman&Cousins!) - don’t want to exclude if there is 
a nice fat excess!


~10 years later CCGV elegant solution: 
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http://arxiv.org/pdf/1007.1727v2.pdf
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LHCHCG Combination Procedures
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Profile likelihood ratio: p0 and 

qLEP (µ) = qµ � q0P.S. 

χ2

https://cdsweb.cern.ch/record/1375842
https://cdsweb.cern.ch/record/1375842
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LHCHCG Combination Procedures
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     to estimate  
signal strength

Profile likelihood ratio: p0 and 
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https://cdsweb.cern.ch/record/1375842
https://cdsweb.cern.ch/record/1375842
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LHCHCG Combination Procedures

21

p0 to test 
background
hypothesis

     to estimate  
signal strength

Profile likelihood ratio: p0 and 

qLEP (µ) = qµ � q0P.S. 

χ2

https://cdsweb.cern.ch/record/1375842
https://cdsweb.cern.ch/record/1375842


Combined Results

x̄ =

nP
i=1

xi/�2
i

1/�2

1

�2
=

1
nP

i=1
1/�2

i

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-163/
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QLEP (QTeV w/o nuisances)
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} qLEP/TeV = qµ � q0
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Importance of nuisance parameters

background, uncertainty, uncertainties 
among most frequent words in ATLAS Higgs 
boson discovery paper
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Parameterized signal and/or background 
models 

e.g. ATLAS H->γγ search  
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4/9 categories

9 categories of unbinned likelihood
Parameterized 
signal model 
from fits to 

MC

Background

model: selected 
functions with 
unconstrained 

nuisance 
parameters



Various terms in L

27

Mass distribution

L per event in

a category

Signal

normalization



Distinguish signal from spurious signal

28

Best fit 
background 

model

True (but 
unknown!) 

background 
distribution
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Model tests (on MC)
9 categories


No CPU time for full 
simulation


3 MC generators, don’t 
expect them to perfectly 
reproduce the background 
data


Select parameterizations 
which can incorporate shape 
uncertainty in unconstrained 
nuisance parameters without 
producing false signals
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BG model selection

30

Maximum spurious  
signal amplitude
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Residual (unknown!) bias: 
Spurious signal term in likelihood

31

⇤2 =
(n� (µ+ �))2

⇥2
+

�2

⇥2
s

µ̂ = n, � = 0

⇥µ =
p
⇥2 + ⇥2

s
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Nuisance parameters
NP’s broaden the likelihood 
profile for the parameter 
of interest

32

⌅⇤2

⌅�
= 0

⌅⇤2

⌅µ
= 0

1

⇥2
µ

=
1

2

⌅2⇤2

⌅µ2

�2 =
(n� (µ+ �))2

�2
+

�2

�2
s

µ̂ = n, �̂ = 0

�µ =
p
�2 + �2

s
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Nuisance parameters
Parameters fitted directly to the 
data but no real interest


E.g. parametric background;  
both shape and normalization 
uncertainty 


Parameters from external 
estimates that incorporate 
systematic uncertainty


E.g. luminosity, signal theory,  
mass resolution, electron, muon 
and jet energy scales
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Constraining nuisance parameters with data
In the profile likelihood priors are implemented as constraints 
with external pseudo-measurements (which in many but not 
all cases are real measurements).


If signal and background are ambiguous (e.g. counting 
events) the constraints (e.g. prior on the background) may 
break the ambiguity but uncertainty is governed by the 
constraint/prior.


If there is a contraint/prior but the signal and background 
are NOT ambiguous (e.g. there is a mass or ionization 
distribution which partially discriminates between them) the 
uncertainty is reduced by the information (via the fit) in the 
data.
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https://indico.cern.ch/getFile.py/access?contribId=8&resId=2&materialId=slides&confId=233551
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Shape systematics

Don’t always have parameterized shape


Interpolate between templates 
(interpolation distance is nuisance 
parameter)


Various interpolation strategies in 
ROOT, tradeoff between speed and 
accuracy (and sometimes unintended 
consequences)

35
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MC statisics
In HEP the simulations tend to be computationally 
expensive - limited MC statistics is sometimes a real 
issue.


Put a Poisson term (nuisance) on each bin. The 
higher the MC stats the more this will constrain 
the shape to the predicted shape. If the statistics 
are poor the data will constrain the background 
shape at the cost of reduced sensitivity to the 
signal (i.e. higher uncertainty).


Usually based on Barlow-Beeston:
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AA - Asymptotics and Asimov dataset
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http://arxiv.org/abs/1007.1727
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AA - Asymptotics and Asimov dataset

38

Compact formulae for

both observed results

and expectations (including

fluctuation bands)
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Curiosity: Precursor to Asimov dataset in LEP 
(DELPHI) Higgs combination code

But unlike CCGV not 
possible to treat 
nuisance parameters
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https://indico.cern.ch/getFile.py/access?contribId=4&resId=0&materialId=slides&confId=233551
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Data-driven methods
HEP depends heavily on Monte Carlo calculations of 
physics processes and detector response for both 
signals (known and hypothetical) and backgrounds.


Sometime we just don’t know and/or have reason 
not to trust the MC results.


Various data-driven methods used to estimate 
background in signal region.


Fits (unbinned, many bins) with sidebands


Variations of  “on-off”: ABCD, Matrix method, 
fit to shapes derived from well-understood 
(signal-free) control regions, ...

41
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Other data-driven methods (ABCD) 
(Variations of on-off and sideband fits)

Known small backgrounds  
(e.g. electroweak 
processes):


Poorly known 
(“Unknown”) 
backgrounds: 


Naively: 


Correlations should be 
accounted for as well...   

42

µK
A,B,C,D

µU = Nc
NB

ND

“Let’s write down the likelihood function”

Signal region
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“Matrix method” 
(Variation of Bob Cousins’ homework problem)

Suppose you know you have only two particle species in 
your sample and know how to tag them but don’t know 
the mixture (e.g. pions and electrons).


N = true number, C = Counted by experiment


Homework: reformulate as 2-bin maximum likelihood (note: 
Nr. parameters=Nr. measurements - why is this “bad”?)
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⇡± ! ⇡± r (”real”)
⇡± ! e± 1� r
e± ! ⇡± f (”fake”)
e± ! e± 1� f

✓
C⇡

Ce

◆
=

✓
r f

1� r 1� f

◆✓
N⇡

Ne

◆

✓
N⇡

Ne

◆
=

✓
r f

1� r 1� f

◆�1 ✓
C⇡

Ce

◆



Event selection

and


Multi-variate analysis 
(often ML these days)
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Machine learning (wikipedia)

Worth understanding 
and learning to use 
Boosted Decision Tree 
(BDT) - frequently 
used in HEP, relatively 
fast and effective
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https://en.wikipedia.org/wiki/Machine_learning
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Look-elsewhere effect (LEE)

Rule of thumb for trials 
factor used before LHC


Eilam and Ofer discovered 
that trials factor grows with 
significance Z (ROT ~OK for Z=3)

49

TF ⇠ �m

�m
?

TF =
pglobal0

plocal0

http://www.springerlink.com/content/tw01166x4175l336/
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Look-elsewhere effect (LEE)

3 crossings

50

1M fits

http://www.springerlink.com/content/tw01166x4175l336/
http://www.springerlink.com/content/tw01166x4175l336/


Oslo Winter School 2018 A. Read, U. Oslo

Fit to background toy

Mean fixed at 0.5

Text

background only

51

background + signal@0.5

background+ floating signal
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Si
gn

ed
 q

(m
)

Si
gn

ed
 q

(m
)

2 examples toy fits
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138 Mfits - it all checks out 

Fitted regions

Extrapolations

53
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Energy (mass) scale systematic 
uncertainties

Local look-elsewhere effect  
when combining channels with 
different energy (mass) scales,  
e.g. electrons, photons, muons, 
jets


Not accounted for in asymptotic 
expressions, nor in the classical 
look elsewhere effect Illustration: Imagine we had 

(illegally!) aligned the red and blue 
curves by hand before combining...


i.e. we don’t yet use the Higgs 
boson for detector calibration!!

54
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Example: 1 uncertain mass scale
3 crossings

Usual LEE

55

Leadbetter (1965),  
O. Vitells (2012)

P.S. Ofer, please publish your work!!

Local LEE

(u=q=-2ln∆L)

m

q(
m
)

∆ - mass internal

σm - mass resolution
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Extrapolate ESS correction

hq0
Entries  182798
Mean   0.8642
RMS     1.455

0 5 10 15 20 25

1

10

210

310

410

510
hq0

Entries  182798
Mean   0.8642
RMS     1.455

q0 distribution

In practice, several energy 
scales


Don’t need O(10/p0) fits to 
MC toys to estimate tiny 
effect!


Several nuisance 
parameters, perform 
empirical fit


O(0.1σ) effect around 
5σfor ATLAS 

p0 = (1� ✏)
1

2
P (�2 > q0) +

✏

2
e�q0/2
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What about Bayesian methodology 
in LHC Higgs boson searches?

Limits, with flat prior, very consistent with 
CLs limits derived in frequentist framework


No serious attempt (yet) to quantify excess 
at 125/6 GeV with Bayes factors
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What about Bayesian methodology 
in LHC Higgs boson searches?

Louis Lyons and David van Dyk (Statistics, 
Imperial College) want to analyse Higgs boson 
discovery in Bayesian framework


“Bayesian wear their priors on their 
sleeves”


However, statistical procedures applied to 
Higgs boson discovery “among the most 
rigorous of complex scientific data today”

58
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Limits interpretation
freq: upper limit on µ at 95% CL does NOT mean that P(µ<µup) = 5% ! Only 
conclusion is that we didn’t see anything in the data consistent with µ≥µup (with a 
method that is guarantied to be wrong 5% of the time).


Bayes: upper limit on µ at 5% (1-95%) of posterior density DOES mean P(µ<µup) = 5% 
BUT there is a prior that the physics of µ exists.


CLs has similar interpretation as freq but protected against obvious wrong freq limits 
for insensitive experiments


Cost of robustness is overcoverage (e.g. wrong less than 5% of time for 95% CL)


Otherwise many same features as Bayes limits


“Lucky” background fluctuations don’t give obviously optimistic limits


Increased uncertainty doesn’t improve a search


Adding a low-sensitivity channel hardly improves the search 
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From exclusion to discovery to measurement

60

⇥(µ = 0,mH) =
L(µ = 0,mH , ˆ̂�)

L(µ̂,mH , �̂)

�(µ,mH) = L(µ,mH , ˆ̂�)

L(µ̂,mH ,�̂)

Background (scan mH)

Signal (scan mH)
Mass consistency

Mass
Signal and mass

Release 1 by 1 the model assumptions in the  
statistical model used in the search, e.g.
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Signal strength vs mass 

Contours not 
shown for 
μ→0...

61
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Testing JP - 2 point hyp. test

62

Null

OK

Alt  
OK

!!?!!
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Mass measurements

Compatibility, 
combination

63
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Implementation

64

http://cds.cern.ch/record/1456844
http://arxiv.org/abs/physics/0306116
http://arxiv.org/abs/1009.1003
http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html
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Summary
Statistical practices in HEP evolved during the 
Higgs boson searches from LEP to Tevatron to 
LHC


Profile likelihood (ratio) used for searches as 
well as measurements (MINUIT fits at the 
base)


The full chain from exclusion to measurements 
via discovery carried out in a common 
framework


Bayes and non-standard treatment of limits (CLs) 
widely used in HEP 
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improbabile rerum cotidie fieri



Oslo Winter School 2018 A. Read, U. Oslo66

Marumi Kado

A. Armbruster

https://indico.cern.ch/getFile.py/access?contribId=8&resId=2&materialId=slides&confId=233551
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Uncapping (open issue)

No change in 
interpretation  
of limit or significance


Visualize deficits for 
p0 and excesses for 
CLs


Need to convince CMS 
 colleagues... :-) 

67

No cap for  
QLEP/Tev

μ 1
3

µ̂ < 0 ! q0 = 0

q


