

Jet Quenching

Małgorzata Janik

Lecture heavily based on CERN summer student lectures by Jan Fiete Grosse-Oetringhaus: https://cds.cern.ch/record/2275404 https://cds.cern.ch/record/2275545

Jet Quenching

Małgorzata Janik

Studying QGP

• Ideally : a Rutherford experiment

- But
 - QGP exists in the lab only for $\sim 10^{-23}$ s
 - No free color charges as probes
- Instead
 - Use probes generated in the heavy-ion collision itself
 → "self-generated" probes

Heavy-ion collisions

Self-generated probes

- Produced early, before the plasma forms $t \sim \hbar / Q$ Q > 2 GeV/c \rightarrow t < 0.1 fm/c
- Production rate "known"
 - Ideally calculable perturbatively
 - Not produced in the medium
- Interact with dense medium (QGP)
- Large cross-section

Self-generated probes

- Produced early, before the plasma forms $t \sim \hbar / Q$ Q > 2 GeV/c \rightarrow t < 0.1 fm/c
- Production rate "known"
 - Ideally calculable perturbatively
 - Not produced in the medium
- Interact with dense medium (QGP)
- Large cross-section

Per central LHC collision 7 D mesons (> 2 GeV/c) 0.2 B mesons (> 10 GeV/c) 10⁻³ jets above 100 GeV 10⁻⁶ jets above 400 GeV

<u>LHC Run 1 (~ 150/ub)</u> 10⁸ D mesons (> 2 GeV/c) 10⁷ B mesons (> 10 GeV/c) 10⁵ jets above 100 GeV 120 jets above 400 GeV

Self-generated probes

- Produced early, before the plasma forms $t \sim \hbar / Q$ Q > 2 GeV/c \rightarrow t < 0.1 fm/c
- Production rate "known"
 - Ideally calculable perturbatively
 - Not produced in the medium
- Interact with dense medium (QGP)
- Large cross-section

Per central LHC collision 7 D mesons (> 2 GeV/c) 0.2 B mesons (> 10 GeV/c)	LHC Run 1 (~ 150/ub) 10 ⁸ D mesons (> 2 GeV/c) 10 ⁷ B mesons (> 10 GeV/c)	Rec. efficiency,
10 ⁻³ jets above 100 GeV 10 ⁻⁶ jets above 400 GeV	10 ⁵ jets above 100 GeV 120 jets above 400 GeV	branching ratios factors ~ 1000

Today: jets

Jets – collimated spray of hadrons

- experimental signatures of quarks and gluons produced in high-energy processes
- quarks and gluons cannot exist freely due to color-confinement
- instead, they come together to form colour-neutral hadrons, in a process that leads to production of collimated spray of hadrons called a jet.

Partons in heavy-ion collisions (recap)

- hard partons are produced early and traverse the hot and dense QGP
- expect enhanced parton energy loss, (mostly) due to medium-induced gluon radiation: 'jet quenching'
- jet: 'collimated bunch of hadrons'
- the best available experimental equivalent to quarks and gluons
- 'vacuum' expectation calculable by pQCD: 'calibrated probe of QGP'

Jets in the QGP

Energy loss in the QGP

How to measure?

Energy loss in the QGP

heavy-ions

Energy loss and *R*_{AA}

- Estimate the opacity of the created medium
 - \rightarrow R_{AA} is called the nuclear modification factor:
 - \rightarrow R_{AA} equals unity means no modification at all

$$R_{\rm AA} = \frac{\rm AA}{\rm rescaled \ pp} = \frac{d^2 N_{\rm AA}/dp_{\rm T} dy}{\langle N_{\rm coll} \rangle d^2 N_{\rm pp}/dp_{\rm T} dy}$$

No medium effect $\rightarrow R_{AA} \approx 1$

Medium effect $\rightarrow R_{AA} < 1$

Energy loss and *R*_{AA}

- Estimate the opacity of the created medium
 - → R_{AA} is called the nuclear modification factor: R_{AA} =
 - RAA equals unity means no modification at all

Medium effect $\rightarrow R_{AA} < 1$

- Nucleons travel on straight lines
- Collisions do not alter their trajectory (energy of nucleons large enough)
- No quantum-mechanical interference
- Interaction probability for two nucleons is nucleon-nucleon cross-section

Roy Glauber

- Nucleons travel on straight lines
- Collisions do not alter their trajectory (energy of nucleons large enough)
- No quantum-mechanical interference
- Interaction probability for two nucleons is nucleon-nucleon cross-section

Roy Glauber

17

- Nucleons travel on straight lines
- Collisions do not alter their trajectory (energy of nucleons large enough)
- No quantum-mechanical interference
- Interaction probability for two nucleons is nucleon-nucleon cross-section

Roy Glauber

- Nucleons travel on straight lines
- Collisions do not alter their trajectory (energy of nucleons large enough)
- No quantum-mechanical interference
- Interaction probability for two nucleons is nucleon-nucleon cross-section

 $N_{coll} = 2$

- Nucleons travel on straight lines
- Collisions do not alter their trajectory (energy of nucleons large enough)
- No quantum-mechanical interference
- Interaction probability for two nucleons is nucleon-nucleon cross-section

Β

Roy Glauber

Α

b

- Nucleons travel on straight lines
- Collisions do not alter their trajectory (energy of nucleons large enough)
- No quantum-mechanical interference
- Interaction probability for two nucleons is nucleon-nucleon cross-section

b A More details in nucl-ex/0701025

 $N_{coll} = 4$

- Nucleons travel on straight lines
- Collisions do not alter their trajectory (energy of nucleons large enough)
- No quantum-mechanical interference
- Interaction probability for two nucleons is nucleon-nucleon cross-section

b A More details in nucl-ex/0701025

N_{coll} = 5 For blue. We have to repeat for all other nucleons in A.

- Nucleons travel on straight lines
- Collisions do not alter their trajectory (energy of nucleons large enough)
- No quantum-mechanical interference
- Interaction probability for two nucleons is nucleon-nucleon cross-section

Realistic Example

light nucleons: have not participated (spectators) dark nucleons: have participated

Figure: nucl-ex/0701025

Glauber MC Output

- Number of spectators
 - Nucleons which did not collide
- Participant/wounded nucleons
 - Collided at least once
 - Called N_{part}
 - Scale with 2A (A = number of nucleons)
- Number of binary collisions
 - Called N_{coll}
 - Scales with A^{4/3}
- Rule of thumb
 - Soft (low p_T) observables scale with N_{part}
 - Hard (high p_T) observables scale with N_{coll}

 $N_{coll} \sim A \cdot L = A^{4/3}$

Glauber MC Output

- 10% most central at RHIC (Au-Au, 200 GeV)
 - N_{coll} \sim 1200
 - N_{part} ~ 380
- 5% most central collisions at LHC (Pb-Pb, 5 TeV)
 - N_{coll} \sim 1770
 - N_{part} ~ 384
- Difference mainly due to cross-section increase

Energy loss and *R*_{AA}

- Estimate the opacity of the created medium
 - \rightarrow R_{AA} is called the nuclear modification factor:
 - \rightarrow R_{AA} equals unity means no modification at all

$$R_{\rm AA} = \frac{\rm AA}{\rm rescaled \ pp} = \frac{d^2 N_{\rm AA}/dp_{\rm T} dy}{\langle N_{\rm coll} \rangle d^2 N_{\rm pp}/dp_{\rm T} dy}$$

No medium effect $\rightarrow R_{AA} \approx 1$

Medium effect	$\rightarrow R_{AA}$	<	1	
---------------	----------------------	---	---	--

Centrality

More central: bigger QGP droplet. Bigger energy loss.

More peripheral: smaller QGP droplet. Smaller energy loss.

R_{AA}

R_{AA}

R_{AA}

R_{AA} of charged particles

The LHC measurements show a slightly stronger suppression than those from RHIC

- LHC a factor of ~7,
- RHIC a factor of ~5

A completely new observation at the LHC is that with increasing p_T the suppression becomes smaller, i.e. RAA increases

Even very energetic partons of the highest p_{τ} suffer considerable energy loss interacting with the medium

Strong suppression in central Pb-Pb fingerprint of hot QCD matter !!

R_{AA} of charged particles

All experiments agree very well

With increasing \boldsymbol{p}_{τ} the suppression becomes smaller

Almost no suppression at very high p_rcompared to pp reference

Measurement extended up to 400 GeV!

R_{AA} measurements

Comparing results from different experiments

• ... but all consistent 🙂

ALICE, PLB720(2013) 52-62 ATLAS, arXiv:1504.04337 CMS, EPJC 72 (2012) 1945

Strategy of Heavy-Ion Physics measure all these systems

Local QCD + initial state/cold nuclear matter

Local QCD + initial state/cold nuclear matter + Quark-Gluon Plasma

Local structure of QCD vacuum

from G. Roland (IS 2013) modified by C. Loizides (QM 2014)

Strategy of Heavy-Ion Physics measure all these systems

Local structure of QCD vacuum Local QCD + initial state/cold nuclear matter

Local QCD + initial state/cold nuclear matter + Quark-Gluon Plasma

from G. Roland (IS 2013) modified by C. Loizides (QM 2014)

R_{AA} of charged particles in pPb

 p_{τ} < 2 GeV/*c* : suppression

2 < p_T < 4 GeV/*c* **: rise to 1.1** (Cronin effect)

*p*_τ > 6 GeV/*c*: consistent with unity

Similar trend with dAu at RHIC less enhancement

strong suppression observed in PbPb is NOT an initial-state effect → hot QCD matter effect

ongoing comparison with models

arXiv:1210.4520 [nucl-ex] PLB 696, 30 (2011)

Gamma, W, Z^o unaffected

We expect no suppression for color-neutral probes:

- No interaction with QGP
- Experimental check of the method

R_{AA} of charged particles

Angular correlations

Angular correlations

Interaction of gluons, light and heavy quarks inside the medium → energy loss, suppression

Jets – collimated spray of hadrons

- experimental signatures of quarks and gluons produced in high-energy processes
- quarks and gluons cannot exist freely due to color-confinement
- instead, they come together to form colour-neutral hadrons, in a process that leads to production of collimated spray of hadrons called a jet.

Reconsructed jets

Jets can be reconstructed using a combination of tracking of charged particles and measurements in electromagnetic and hadronic calorimeters.

Typically the detected particles are grouped within a given angular region, i.e. a cone with radius R.

R

What's a jet?

Jet finding is easy... High pT jets, pp collision

What's a jet?

Jet finding is easy... High pT jets, pp collision ...until it isn't Low p⊤ jets, central heavy-ion collision UE

Jet and Underlying Event

Thousands of particles are produced and the underlying event backgrounds are enormous

Jets in heavy-ion collisions sit on top of large underlying event (UE) Need to *decide* which particles are part of jet and which belong to UE: **UE subtraction**

Current methods assume that local UE (under jet) is the same as elsewhere in the event I.e., UE modification due to jet would manifest as modification of observed jet

Suppression of jets

Jets are not only embedded in a huge background but also modified. Dramatic suppression of jets and momentum imbalance is observed.

 R_{AA} of jets

ATLAS measured RAA of jets in 0-10% central events at 5.02 TeV for pT [6].1 - 1 TeV]

- strong suppression in Pb–Pb collisions at LHC persists up to the highest measured pT, extended up to 1 TeV/c.
- the medium created in Pb–Pb collisions is so opaque that it can quench even the most energetic jets.
- a clear centrality dependence is observed, as for single hadrons

v₂ of charged particles and jets

Significant positive v₂:

- relationship between the measured jet suppression and the details of the initial nuclear geometry;
- confirms expectation that the jet suppression is strongest in the out-of-plane direction where partons traverse the largest amount of hot and dense matter

Simultaneous measurements of charged particles and jets R_{AA} and v2

Momentum imbalance

Jets are not only embedded in a huge background but also modified. Dramatic suppression of jets and momentum imbalance is observed.

Dijet Asymmetry

iet

Dijet Asymmetry

Excess of imbalanced jets in AA collisions 53

Photon-jet and Z-jet correlations

γ, W, Z unaffected by the medium

Photon-jet and Z-jet correlations

Measured "absolute energy loss" (out of the jet cone) by comparing photon/Z and jet transverse momentum

 γ no quenching

γ, W, Z unaffectedby the medium

Photon-jet and Z-jet correlations

Arxiv

Jet substructure

- Differential jet shape $\rho(\mathbf{r})$ describes radial distribution of transverse momentum inside jet cone. It is measured in **r** slices.
- If we compare jet shape between pp and PbPb we can observe big differences for large radii in most central collisions.
- Details seen in the ratios. Deviations from 1 indicate modification of jet structure in QGP.
- Energy that the jets lose in the medium is redistributed at large distances from the jet axis

Jet measurements

Measurement	Colliding	$\sqrt{s_{\rm NN}}$	R	Observables	Ref.				
	system	(Tev)		(variables)					
ALICE									
Charged jets	Pb–Pb	2.76	0.2, 0.3	yields($p_{\rm T}$,cent.), $R_{CP}(p_{\rm T})$, R_{CP} (cent.)	[209]				
			0.2	$v_2^{\text{chjet}}(p_{\text{T}},\text{cent.})$	[63]				
Charged + neutral jets			0.2	$yields(p_T,cent.), R_{AA}(p_T,cent.)$	[73]				
Hadron-jet			0.2, 0.4, 0.5	$\Delta_{\text{recoil}}, \Delta I_{\text{AA}}$	[210]				
CMS									
Particle flow jets	Pb–Pb	2.76	0.2, 0.3, 0.4	yields($p_{\rm T}$,cent.), $R_{\rm AA}(p_{\rm T}$,cent.)	[211]				
Dijets			0.5	Ev. frac. $(p_{\mathrm{T}}^{\mathrm{leading jet}}, \Delta \phi_{1,2}, A_J),$	[76]				
				$\langle p_T^{\parallel} \rangle (A_J, \text{cent.}, \Delta \mathbf{R}); \langle (p_{T,1} - p_{T,2})/p_{T,1} \rangle (p_{T,1})$					
			0.3	Ev. frac. $(\Delta \phi_{1,2}, A_J, x_j = p_{T,2}/p_{T,1})$	[212]				
				$(p_{T,2}/p_{T,1})(p_{T,1})$					
			0.2-0.5	$\left\langle p_T^{\parallel} \right\rangle (\Delta, A_J)$	[93]				
Photon-jet			0.3	distribution of $x_{J\gamma} = p_T^{\text{Jet}} / p_T^{\gamma}$	[83]				
Jet fragmentation			0.3	fragm. fun. $\xi = ln(1/z) (p_T > 4 \text{ GeV}/c)$	[84]				
				fragm. fun. $\xi = ln(1/z) (p_T > 1 \text{ GeV}/c)$	[85]				
Jet shapes			0.3	$\rho(r)$	[88]				
Jet-track correlations			0.3	jet-track correlations $(p_{\rm T}, \Delta \eta, \Delta \phi)$	[91]				
			0.3	redistribution of mom. in dijet events $(p_T, \Delta \phi)$	[213]				
ATLAS									
Inclusive jets	Pb–Pb	2.76	0.2	$R_{\rm AA}^{\rm jet}(p_{\rm T}, y ,{\rm cent.})$	[70]				
				$v_2^{\text{jet}}(p_{\text{T}}, \text{cent.})$	[40]				
Dijets			0.4	distribution of $A_J, \Delta \phi$	[214]				
Jet size			0.2 - 0.5	$R_{CP}^{R}/R_{CP}^{0.2}(p_{\rm T})$	[215]				
Jet fragmentation			0.4	$D(z), R_{D(z)}(z, p_T)$	[216]				
Neighbouring jets			0.2, 0.3, 0.4	$dR_{\Delta R}/dE_T^{\text{nbr}}(E_T^{\text{nbr}}, \text{cent.}), \rho_{R_{\Delta R}}(E_T^{\text{nbr}}, \text{cent.})$	[217]				

For references see: Reviews in Physics 1 (2016) 172-194 https://arxiv.org/abs/1702.07231

Energy Loss in QGP

- QGP: high density of quarks and gluons / color sources
- Traversing quark / gluon feels
 color fields
- Collisional energy loss
 - Elastic scatterings
 - Dominates at low momentum
- Radiative energy loss
 - Inelastic scatterings
 - Dominates at high momentum
 - Gluon bremsstrahlung

How does medium achieve the suppression?

$\Delta \mathbf{E} = \Delta \mathbf{E}_{coll} + \Delta \mathbf{E}_{rad}$

Radiative Energy Loss

Baier, Dokshitzer, Mueller, Peigné, Schiff, NPB 483 (1997) 291

Dead Cone Effect

• Due to kinematical constraints, gluon radiation in vacuum suppressed for angles $\theta < m/E = 1/\gamma$ by

$$y \left(1 + \frac{m}{E}{\theta}\right)^2$$

- Massless parton m = 0 \rightarrow no suppression

- Similar effect in the medium
 - Significant for charm and beauty
 - Radiative energy loss reduced by 25% (c) and 75% (b) $[\mu = 1 \text{ GeV/c}^2]$
- Implies quark mass dependence

$$R_{AA}^{\pi} < R_{AA}^{D} < R_{AA}^{B}$$

Collisional Energy Loss

For light quarks and gluons

$$\Delta E_{q,g} \sim \alpha_S C_R \,\mu^2 \,L \,\ln \frac{ET}{\mu^2}$$

For heavy quarks additional term

$$\alpha_s^2 T^2 C_R \mu^2 L \ln \frac{ET}{M^2}$$

- Energy loss depends on
 - Path length through medium linear
 - Parton type (light or heavy)
 - Temperature T
 - Mass of heavy quark M
 - Medium parameter μ (average transverse momentum transfer)

Comparisons with theory

Heavy Partons

Summary

- Energy loss occurs by radiative and collisional processes
- Theoretical calculations extract medium properties like density, average momentum transfer, mean free path, \hat{q}
- We have seen significantly suppression of charged hadron spectra
 - Dominated by light quarks / gluons
- Calculations more accurate for heavy quarks
- Dependence of energy loss on quark mass expected

Expectation
$$R_{AA}^{\pi} < R_{AA}^{D} < R_{AA}^{B}$$

Summary

- Energy loss occurs by radiative and collisional processes
- Theoretical calculations extract medium properties like density, average momentum transfer, mean free path, \hat{q}
- We have seen significantly suppression of charged hadron spectra
 - Dominated by light quarks / gluons
- Calculations more accurate for heavy quarks
- Dependence of energy loss on quark mass expected

A dense strongly coupling medium is produced in HI collisions

Reviews in Physics 1 (2016) 172-194

Backup

Jets at LHC

