INFIERI2019 SCHOOL at HUST Laboratory sessions Summer School (05/05/2019)

Laboratory Topic	Organizers
	NICS ORIENTED LABS
1) Front-End Electronics on Deep Sub-	Prof. Lodovico RATTI (Pavia U.)
Micron CMOS technology for the next	
generation of pixel based detectors (Particle	IEEE Member and member of the RD53 R&D
Physics):	international Collaboration (among some
Pixel front-end characterization	others cutting-edge R&D's).
This is an introduction to VDSM (Very Deep	
Sub-Micron Technology)	
The focus of the lab will be the	
experimental characterization of a front-	
end channel for pixel detectors in a 65 nm	
CMOS technology. Pixel Front-End	
ASICs are located at the very beginning	
of the Signal Processing chain in pixel-	
based detectors used in many	
fundamental and applied research fields.	
So, generally speaking, testing of front-	
end circuits in advanced microelectronic	
technologies is an important part of the	
implementation of modern radiation detection systems.	
During the laboratory session, after a	
short introduction on the device under	
test and the test set up, students will	
learn how to use basic electronic	
instrumentation (a power supply, a digital	
scope, a waveform/arbitrary function	
generator) to configure the circuit and	
measure the main electrical parameters.	
While no previous experience in pixel	
front-end characterization is required,	
basic knowledge on electronic circuit	
operation and standard bench top	
instrumentation can be of some help.	
2) Digital SiPM	Prof. Nicola d'ASCENZO (HUST, CN)
The lab will focus on the test of a unique	
device, an array of CMOS SiPM, composed of	

256 pixels, individually read-out. The device	
is able to provide the position of the photon	
with an unprecedented accuracy of 50 um. In	
the experiment the students will study the	
light emitted by a fast Pulsed Diode Laser, at	
410 nm. A series of filters interposed	
between the laser and the sensor will reduce	
the optical power at the sensor surface to f_{and}	
few photons/mm ² . The measured space	
detection pattern of multi-photon states will	
be studied & several possibilities analyzed.	
3) Introduction to FDSOI pixel detectors	Prof. Yoshinobu UNNO (KEK, Japan)
The Lab will 1) explain the concept and	
requirements of tracking in the future e^+e^-	
collider. 2) An ideal detector i.e. a sheet of	
silicon sensitive to the traversing charged	
particles in its full volume and capable of high	
granular & intelligent readout without adding	
dead material will be discussed and critical	
issues identified and treated with practical	
measures. 3) An SOI chip and readout system	
will be setup to capture the passage of	
cosmic rays as experimental demonstrator.	
4) New sensors characterization	Tba
This Lab will introduce the students to new	100
pixel technology namely the HV-CMOS pixels	
that look promising for instance for the	
future electron-positron machine in projects.	
It is a characterization of these new sensors	
prototype using a simple ALIBABA based test	
set-up which is widely used in several	
worldwide research Labs and Universities.	
5) 2,5 and 3D Technology: Introduction to 3D	Dr. Robert PATTI, NHANCED semiconductors
Interconnect technology design	USA
In this lab, students will be exposed to	
integrated circuit technology, 3D integrated	
circuit design flows and their related CAD	
tools. The students will use CAD tools to	
create simple 2D and 3D IC designs,	
implementing these in schematics and	
layout. Prior experience with CAD tools or	
integrated circuit design is not required.	
CAD Tools used in the lab: MicroMagic, MAX,	
SUE	

6) Static SiPM characterization	Lin WANG
Novel SiPMs in 350 nm CMOS technology	JONBOIN Technology Co., Ltd.(Hubei)
were realized. In this lab we provide an	(Organized transport to Ezhou)
introduction on how to use a probe station to	(Organizea transport to Eznoa)
conduct current/voltage and capacitance/	
voltage characterization measurements in a	
clean room. The physical and technological	
basis of the experiment will be also	
presented. DATA TRANSMISSIO	NLAD
1) Optical fibers and communication	By member of the National Laboratory of
Laboratory	optoelectronics, Wuhan (WLNO)
Wuhan is a top worldwide class place in this	
high technology and related research	
domain. ASTROPHYSICS OR HEP BA	
1) Detection Lab: Characterization of a CCD	Dr. Jean Gabriel CUBY (LAM-CNRS/INSU, FR)
Detector (Astrophysics)	
The lab consists in characterizing a CCD	
camera by measuring:	
The readout noise	
The dark current	
The linearity range	
• The CCD gain	
Also according the weather conditions some	Jean Gabriel CUBY (LAM-CNRS/INSU, FR)
observational sessions will be organized	
2) Introduction to Dark Matter detection	Prof. Charling TAO (CCPM-CNRS, FR &
The Dark Matter (DM) of our Galaxy can	Tsinghua U, CN)
scatter from the nuclei of detectors.	
If the DM has a mass of 100 GeV/c2, the	
recoil energies of the nuclei are in the 1-100	
keV range.	
Direct detection of DM can be observed	
with Ge/Sidetectors, Scintillating crystals or	
liquids, or gaseous detectors.	
This Lab will have 2 of the 3 main types of	
detectors sensitive to keV signals :	
1) germanium (or Silicon) with electronics	
and data acquisition	
2) Nal crystal with PMT and associated	
electronics and data acquisition	
The goals of the lab are to	
- Understand the different types of detectors	
- onderstand the unterent types of detectors	

and learn to set up, trigger and acquire data.	
- Measure the responses of the detectors to a	
calibration source (eg Fe55, Cd109, Na22).	
- Compare the energy resolutions of each	
type of detector.	
- Measure the responses of the detector to a	
neutron source to mimick nuclear recoils	
- Introduce the concept of "quenching	
factor" (Cannot be demonstrated on site)	
- Compare with the expected rate for DM.	
The rates indicate the level of	
background. Conclusions?	
3) Use of SiPM in Astrophysics experiments	Prof Ricardo PAOLETTI (Siena U. and INFN,
In this lab we will introduce the students to	(TI)
the characterization of the basic properties	
of a SiPM including dark rate, cross talk,	
response to low photon flux and gain.	
4) Electron Beam Tomography of a basic	Thorben QUAST, Physikalisches Institut 3A,
element of the High Granularity Calorimetry	RWTH Aachen, GE / CERN , CH
for HL-LHC (CMS)	Dr. David BARNEY, CERN, CH
In this lab, students implement a simple	
particle tracking algorithm and apply it on	
real beam test data for measuring the material	
budget of a printed circuit board exposed in	
an electron beam. For this, reconstructed data	
taken with the DATURA beam telescope	
during an CMS HGCal beam test at DESY in	
2018 are provided.	
First, students are supposed to assess the	
quality of the track measurement deploying	
basic monitoring algorithms. Secondly, they	
evaluate the impact of misalignment of the	
tracking planes on the pointing resolution.	
Afterwards, the distribution of kink angles	
from track-triplets in front and behind the device under test (DUT) is measured for	
different DUT thicknesses. The theoretical	
relation of the mean kink angle with respect	
to the material budget will be confirmed.	
Ultimately, students compute the mean kink	
angle as a function of the track impact	
position onto the DUT and as result will	
-	
and the full available dataset will be analysed	
and the full available dataset will be analysed	
obtain its tomography image. Both a reduced	

sufficient statistic for obtaining high resolution images.	
LABs DEDICATED to MED	ICAL PHYSICS
1) NEMA measurement of PET/CT system	Bo ZHANG
sensitivity	RaySolution Digital Medical Imaging Co.,Ltd.
Aim of the lab: Students will measure the	(Organized transport to Ezhou)
sensitivity of a PET scanner according to the	
NEMA standard and will provide an	
interpretation of the measurement with	
reference to the physics of PET systems.	
2) Small Animal PET mouse acquisition	TONGJI HOSPITAL
(according to what is there in that time)	
Aim of the lab: Students will perform tau	
staining of mice brain in a biology laboratory	
and understand the basic techniques used for	
basic neurology science.	
,	
3) Digital Small Animal PET mouse image	Prof. Nicola d'ASCENZO, PETLAB, HUST
analysis (Radiomics)	, , ,
The data collected in (3) will be analyzed in a	
radiomics analysis framework. Students will	
learn how to perform the radiomic analysis of	
PET images and how to extract reasonable	
quantities.	
4) Behind a Published Paper - From Bench	Alba di PARDO, Medical Geneticist,
to Medical Community	NEUROMED (IT)
Publishing a scientific paper is the only way	
by which scientists, from different	
backgrounds, communicate with each other.	
The application of multidisciplinary	
approaches and the synergy between	
researchers is a prerequisite for high-quality	
discoveries and publications.	
The overall aim of the lab is to create an	
interactive environment that may guide	
students through a virtual process for the	
production of a scientific paper and	
consolidate the idea that science benefits	
greatly from a community that approaches	
problems in a variety of creative ways.	
In particular, students will be made aware	
of the entire process of doing medical	
research and learning to practice the	

activities of scientists - asking questions,	
performing experiment, collecting and	
analyzing data as well as thinking of new	
questions to explore, with the ultimate goal	
to conduct research aimed at improving	
overall human health.	
After a brief introduction of the topic and the	
discussing of the objective of the study,	
students will be divided into groups and each	
of which will be given videos and/or	
representative images from experiments	
previously performed in order to let them to	
extrapolate and analyse numerical data, build	
representative graphs and interpret the results	
under a medical point of view.	
Students will be encouraged then to discuss	
the data obtained and to approach the	
preparation of the manuscript in light of their	
interpretations, strengths and interests.	
Such Lab is designed to give students the	
possibility to get closer to medical science	
and stimulate them to implementing it with	
their own expertise.	
Scientific community from different	
background is better able to generate new	
research methods, explanations, and ideas,	
which can help science over challenging	
hurdles and shed new light on problems.	
СОМРИТАТ	IONAL LABS
1)Introduction to INTEL FPGA BASED LAB	ZHU Zhaojun (Felix)
Zhu Zhaojun will help to create all accounts	INTEL Regional Applications Engineer with
to access the new FPGA cloud and he also	expertise in OpenCL/HLS/HyperFlex
will prepare the workshop material which	technologies
can be running on the FPGA cloud for this	
class.	
Zhu Zhaojun (Felix) joined Altera (now Intel	
Programmable School Group, PSG) in August	
2014 as Regional Applications Engineer with	
expertise in OpenCL/HLS/HyperFlex	
technologies. He has been working closely	
with key customers to optimize their designs,	
customize OpenCL BSP and fix tough issues.	
	1

2) Massive Parallel Computing (session 1) This is the first session of 3 hours dedicated to Massive Parallel Computing by Dr. R. Iope (UNESP) and Prof. L. Sato (USP). The details of this session will be provided soon This hands-on training has been designed to be a comprehensive, practical introduction to the fundamentals of parallel programming based on Intel Many Integrated Architecture (MIC) and programming models, aiming to demonstrate the processing power of the Intel Xeon / Xeon Phi product families. Activities start with a brief overview of the second-generation Intel Xeon Phi processors, followed by a series of simple exercises. Attendants will learn how to compile and run trivially simple C/C++ source codes for native execution on dedicated servers based on the Intel Xeon Phi processor. They will also have the opportunity to work with shared-memory parallelism with MPI (Message-Passing	Dr Rogerio IOPE Dr. Raphael COBE, Dr. Silvio STANZANI, Mr. Jefferson FIALHO (São Paulo State University – UNESP, São Paulo, Brazil) and Prof. Liria SATO (University of São Paulo – USP, São Paulo, Brazil)
 code optimization using the vectorization support provided by the Intel compilers. 3) Massive Parallel Computing (session 2) This is the second session of 3 hours dedicated to Massive Parallel Computing descried here above. 	Dr Rogerio IOPE Dr. Raphael COBE, Dr. Silvio STANZANI, Mr. Jefferson FIALHO (São Paulo State University – UNESP, São Paulo, Brazil) and
4) Machine Learning & Deep Learning applied to Astrophysics ; it includes Two tutorials based on real astronomical applications. In the first tutorial we will approach a classification problem and we	Prof. Liria SATO (University of São Paulo – USP, São Paulo, Brazil) Dr. Lara LLORET IGLESIAS, And Dr. Diego TUCCILLO , Institute of Physics of the University of Cantabria, UC-CSIC, SP.
 will compare the results obtained with classical ML with the ones obtained with Deep Learning. In the second tutorial we will test a Convolutional Neural Network for a regression problem, reproducing the 	

results obtained in Tuccillo et al (2018) for estimation of galaxy parameters.	
5) Deep Learning with Keras I+II Introduction to Deep Learning with general examples (in part I) and a specific example (heavy resonance tagging) from particle physics (in part II). The advanced part II is not necessarily restricted to particle physicists, the techniques are of general interest. The part II will be a 'playground' to explore ideas on a demanding example where the best performing implementations will be presented at the end of the school.	Drs. Dirk KRUCKER, Mareike MEYER, Patrick CONNOR (DESY-Ge) & <u>Lisa BENATO</u> and Prof. Gregor KASIECZKA, U niversity of Hamburg, GE.
6) Introduction to new FPGAs software platform The sheer amount of computing resoruces required to run modern cloud workloads has put a lot of pressure on the design of power efficient cluster nodes. To address this problem, INTEL (HARP) has proposed CPU- FPGA integrated architectures that can deliver efficient power-performance executions this tutorial presents HardCloud and extension of Open MP 4.X standard that eases the task of offloading FPGA modules to cluster accelerators. Participants will be able to do hands-on experiments with Hard Cloud to program FPGAs in order to accelerate code of INTEL Altera HARP2 architecture. It will cover basic concepts on programming with Open MP and introduce to System Verilog.	Prof. Guido ARAUJO, Dr. Marcio PEREIRA, Ramon NEPOMUCENO (UNICAMP, SP, BR)
7) INTRODUCTION to GPU COMPUTING Session 1:,Students will obtain first experience with programming GPUs using Nvidia's framework CUDA. The lab consists of two sessions: In the first session, an introduction to CUDA is given, followed by exercises during which the students implement vector addition and matrix multiplication. During these exercises, the students will study different levels of parallelization and the usage of different memory types	Dr. Dorothea Vom BRUCH LPNHE Laboratory Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, FR

8) INTRODUCTION to GPU COMPUTING Session 2: The topic of the second session is track reconstruction for a particle physics	Dr. Dorothea Vom BRUCH LPNHE Laboratory Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNDS (UN2D2, Dorig ED
detector. A set of straight-line tracks will be provided, where every track is a collection of 3D space points. The task consists in finding the direction and its uncertainty at the end of the track, i.e. the track state. For this, the students will implement a Kalman filter and parallelize it to run efficiently on	CNRS/IN2P3, Paris, FR
the GPU.	

RUN EACH DAY Presentation (8' max each) May 13th in plenary session .May 14th – May 18th 14:00 – 17:00 and May 20th -May 24th 14:00 – 17:00