Physics at the FCC (Future Circular Collider)

Summer School on Intelligent'signal processing for FrontIEr Research and Industry

Michelangelo L. Mangano Theory Department, CERN, Geneva

23 May 2019

FCC vs CEPC

- Overall project similar to CEPC/SPPC, as just presented by Joao
- Main differences:
 - FCC key target is 100 TeV pp collider, of which the ee phase is meant as an intermediate step. The ee design must comply with the pp design priorities
 - ee operations must include physics at and slightly above — the top-antitop production threshold

Future Circular Colliders (FCC)

International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- ~100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as potential first step
- **HE-LHC** with *FCC-hh* technology
- *p-e (FCC-he) option,* integration of one IP, e from ERL
- CDR available at <u>https://fcc-cdr.web.cern.ch</u>

Experiments

Infrastructures

Future Circular Collider

Plan of the lecture

- Review the physics motivations for future colliders
- Define the goals of a future collider
- Illustrate target performance, with emphasis on the role of the pp collider (for ee see Joao's talk)
- Brief overview of key technology challenges, and a possible timeline of the FCC project implementation plan

The next steps in HEP build on

- having important questions to pursue
- creating opportunities to answer them
- being able to constantly add to our knowledge, while seeking those answers

The important questions

• Data driven:

- What is Dark Matter?
- Origin of Neutrino masses?
- Origin of Matter vs antimatter asymmetry?
- What is Dark energy?
- ...

• Theory driven:

- The hierarchy problem and naturalness
- The flavour problem (origin of fermion families, mass/mixing pattern)
- Quantum gravity
- Origin of inflation
- ...

The opportunities

- For none of these questions, the path to an answer is unambiguously defined.
- Two examples:
 - DM: could be anything from fuzzy 10⁻²² eV scalars, to O(TeV) WIMPs, to multi-M_☉ primordial BHs, passing through axions and sub-GeV DM
 - a vast array of expts is needed, even though most of them will end up emptyhanded...
 - Neutrino masses: could originate anywhere between the EW and the GUT scale
 - we are still in the process of acquiring basic knowledge about the neutrino sector: mass hierarchy, majorana nature, sterile neutrinos, CP violation, correlation with mixing in the charged-lepton sector (μ→eγ, H→μT, ...): as for DM, *a broad range of options*
- We cannot objectively establish a hierarchy of relevance among the fundamental questions. The hierarchy evolves with time (think of GUTs and proton decay searches!) and is likely subjective. It is also likely that several of the big questions are tied together and will find their answer in a common context (eg DM and hierarchy problem, flavour and nu masses, quantum gravity/inflation/dark energy, ...)

One question, however, has emerged in stronger and stronger terms from the LHC, and appears to single out a unique well defined direction....

Who ordered that ?

We must learn to appreciate the depth and the value of this question, which is set to define the future of collider physics

Electromagnetic vs Higgs dynamics

 $-\mu^2 |H|^2 + \lambda$

any function of IHI² would be ok wrt known symmetries

 $V_{SM}(H) =$

both sign and value totally arbitrary

>0 to ensure stability, but otherwise arbitrary

 H^4

a historical example: superconductivity

- The relation between the Higgs phenomenon and the SM is similar to the relation between superconductivity and the Landau-Ginzburg theory of phase transitions: a quartic potential for a bosonic order parameter, with negative quadratic term, and the ensuing symmetry breaking. If superconductivity had been discovered after Landau-Ginzburg, we would be in a similar situations as we are in today: an experimentally proven phenomenological model. But we would still lack a deep understanding of the relevant dynamics.
- For superconductivity, this came later, with the identification of e-e-Cooper pairs as the underlying order parameter, and BCS theory. In particle physics, we still don't know whether the Higgs is built out of some sort of Cooper pairs (composite Higgs) or whether it is elementary, and in either case we have no clue as to what is the dynamics that generates the Higgs potential. With Cooper pairs it turned out to be just EM and phonon interactions. With the Higgs, none of the SM interactions can do this, and **we must look beyond.**

examples of possible scenarios

• **BCS-like**: the Higgs is a composite object

. . .

- Supersymmetry: the Higgs is a fundamental field and
 - $\lambda^2 \sim g^2 + g'^2$, it is not arbitrary (MSSM, w/out susy breaking, has one parameter less than SM!)
 - potential is fixed by susy & gauge symmetry
 - EW symmetry breaking (and thus m_{H} and $\lambda)$ determined by the parameters of SUSY breaking

Decoupling of high-frequency modes

short-scale physics does not alter the charge seen at large scales

high-energy modes can change size and sign of both μ^2 and λ , dramatically altering the stability and dynamics => hierarchy problem

The hierarchy problem

- The search for a **natural** solution to the hierarchy problem is likewise unavoidably tied to BSM physics, and has provided so far an obvious setting for the exploration of the dynamics underlying the Higgs phenomenon.
- Lack of experimental evidence so far for a straightforward answer to naturalness, forces us to review our biases, and to take a closer look even at the most basic assumptions about Higgs properties
 - again, "who ordered that?"
 - in this perspective, even innocent questions like whether the Higgs gives mass also to 1st and 2nd generation fermions call for experimental verification, nothing of the Higgs boson can be given for granted
 - what we've experimentally proven so far are basic properties, which, from the perspective of EFT and at the current level of precision of the measurements, could hold in a vast range of BSM EWSB scenarios
 - the Higgs discovery does not close the book, it opens a whole new chapter of exploration, based on precise measurements of its properties, which can only rely on a future generation of colliders

Key question for the future developments of HEP: Why don't we see the new physics we expected to be present around the TeV scale ?

- Is the mass scale beyond the LHC reach ?
- Is the mass scale within LHC's reach, but final states are elusive to the direct search ?

These two scenarios are a priori equally likely, but they impact in different ways the future of HEP, and thus the assessment of the physics potential of possible future facilities

Readiness to address both scenarios is the best hedge for the field:

- precision
- sensitivity (to elusive signatures)
- extended energy/mass reach

What we want from a future collider

- <u>Guaranteed deliverables</u>:
 - study of Higgs and top quark properties, and exploration of EWSB phenomena, with the best possible precision and sensitivity
- Exploration potential:
 - exploit both direct (large Q²) and indirect (precision) probes
 - enhanced mass reach for direct exploration
 - E.g. match the mass scales for new physics that could be exposed via indirect precision measurements in the EW and Higgs sector
- <u>Provide firm Yes/No answers</u> to questions like:
 - is there a TeV-scale solution to the hierarchy problem?
 - is DM a thermal WIMP?
 - could the cosmological EW phase transition have been 1st order?
 - could baryogenesis have taken place during the EW phase transition?
 - could neutrino masses have their origin at the TeV scale?

• ..

Event rates at FCC: examples

FCC-ee	н	Ζ	W	t	т(←Z)	b(←Z)	c(←Z)
	10 ⁶	5 10 ¹²	10 ⁸	10 ⁶	3 10 ¹¹	1.5 10 ¹²	10 ¹²
FCC-hh		н	b	t	W (←t) า	r(←W←t)
	2.5	10 ¹⁰	10 ¹⁷	10 ¹²	10	12	10 ¹¹
FCC-e	h		н			t	
			2.5 10 ⁶			2 10 ⁷	

Higgs couplings: beyond the HL-LHC

Collider	HL-LHC	HL-LHC update	ILC ₂₅₀	CLIC ₃₈₀	LEP3240	$CEPC_{250}$	FCC-ee ₂₄₀₊₃₆₅		
Lumi (ab^{-1})	3	3	2	0.5	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	25	15	7	6	7	3	+4	
$\delta\Gamma_{ m H}/\Gamma_{ m H}~(\%)$	SM	50	3.6	6.3	3.6	2.6	2.7	1.3	1.1
$\delta g_{ m HZZ}/g_{ m HZZ}$ (%)	3.5	1.5	0.3	0.40	0.32	0.25	0.20	0.17	0.16
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	3.5	1.7	1.7	0.8	1.7	1.2	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	8.2	3.7	1.7	1.3	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	SM	2.3	4.1	2.3	1.8	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}~(\%)$	3.9	2.5	2.2	2.1	2.1	1.4	1.6	1.01	0.90
$\delta g_{ m H au au}/g_{ m H au au}$ (%)	6.5	1.9	1.9	2.7	1.9	1.4	1.4	0.74	0.67
$\delta g_{ m H}$ $\mu \mu / g_{ m H}$ $\mu \mu (\%)$	5.0	4.3	14.1	n.a.	12	6.2	10.1	9.0	3.8
$\delta g_{ m H}\gamma\gamma/g_{ m H}\gamma\gamma$ (%)	3.6	1.8	6.4	n.a.	6.1	4.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}~(\%)$	4.2	3.4	_	_	_	_		_	3.1
BR _{EXO} (%)	SM	SM	< 1.7	< 3.0	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0

Table 1: Relative statistical uncertainty on the Higgs boson couplings and total decay width, as expected from the FCC-ee data, and compared to those from HL-LHC and other e^+e^- colliders exploring the 240-to-380 GeV centre-of-mass energy range. All numbers indicate 68% CL intervals, except for the last line which gives the 95% CL sensitivity on the "exotic" branching fraction, accounting for final states that cannot be tagged as SM decays. The FCC-ee accuracies are subdivided in three categories: the first sub-column give the results of the model-independent fit expected with 5 ab^{-1} at 240 GeV, the second sub-column in bold – directly comparable to the other collider fits – includes the additional 1.5 ab^{-1} at $\sqrt{s} = 365$ GeV, and the last sub-column shows the result of the combined fit with HL-LHC. The fit to the HL-LHC projections alone (first column) requires two additional assumptions to be made: here, the branching ratios into $c\bar{c}$ and into exotic particles are set to their SM values.

* M. Cepeda, S. Gori, P. J. Ilten, M. Kado, and F. Riva, (conveners), et al, *Higgs Physics at the HL-LHC and HE-LHC*, CERN-LPCC-2018-04, <u>https://cds.cern.ch/record/2650162</u>.

Remarks and key messages

- Updated HL-LHC projections bring the coupling sensitivity to the few-% level. They are obtained by extrapolating current analysis strategies, and are informed by current experience plus robust assumptions about the performance of the phase-2 upgraded detectors in the high pile-up environment
 - Projections will improve as new analyses, allowed by higher statistics, will be considered

- I. To significantly improve the expected HL-LHC results, future facilities must push Higgs couplings' precision to the sub-% level
- 2. Event rates higher than what ee colliders can provide are needed to reach sub-% measurements of couplings such as H $\gamma\gamma$, H $\mu\mu$, HZ γ , Htt

EW	parameters
(FCC-ee

Observable	present value ± error	FCC-ee stat.	FCC-ee syst.
m_Z (keV)	91186700±2200	5	100
$\Gamma_{\rm Z}$ (keV)	2495200±2300	8	100
R_l^Z (×10 ³)	20767 ± 25	0.06	0.2-1.0
α_{s} (m _Z) (×10 ⁴)	1196±30	0.1	0.4-1.6
R_{b} (×10 ⁶)	216290±660	0.3	<60
$\sigma_{\rm had}^0$ (×10 ³) (nb)	41541±37	0.1	4
N_{ν} (×10 ³)	2991±7	0.005	1
$\sin^2 \theta_{W}^{eff}$ (×10 ⁶)	231480±160	3	2-5
$1/\alpha_{QED}(m_Z)$ (×10 ³)	128952±14	4	Small
$A_{\rm FB}^{b,0}$ (×10 ⁴)	992±16	0.02	1-3
$A_{\rm FB}^{{\rm pol}, \tau}$ (×10 ⁴)	1498±49	0.15	<2
m _W (MeV)	80350±15	0.6	0.3
$\Gamma_{\rm W}$ (MeV)	2085±42	1.5	0.3
$\alpha_s (m_W) (\times 10^4)$	1170 ± 420	3	Small
$N_{\nu}(\times 10^3)$	2920±50	0.8	Small
m _{top} (MeV)	172740±500	20	Small
$\Gamma_{\rm top}$ (MeV)	1410±190	40	Small
$\lambda_{\rm top}/\lambda_{\rm top}^{\rm SM}$	1.2±0.3	0.08	Small
ttZ couplings	±30%	0.5 - 1.5%	Small

Global EFT fits to EW and H observables at FCC-ee

Constraints on the coefficients of various EFT op's from a global fit of (i) EW observables, (ii) Higgs couplings and (iii) EW+Higgs combined. Darker shades of each color indicate the results neglecting all SM theory uncertainties. 21

Remarks and key messages

- Higgs and EW observables are greatly complementary in constraining EFT ops and possibly exposing SM deviations
- An ee Higgs factory needs to operate at the Z pole and WW threshold to maximize the potential of precision measurements of the EW sector
- EW&Higgs precision measurements at future ee colliders could probe scales as large as several 10's of TeV ($c_i \sim 1 \div 4\pi$)
- 2. To directly explore the origin of possible discrepancies, requires collisions in the several 10s of TeV region
- 3. A 100-TeV pp collider is a natural, and likely required, extension of an ee facility

SM Higgs: event rates in pp@100 TeV

	gg→H	VBF	WH	ZH	ttH	HH
N100	24 x 10 ⁹	2.1 x 10 ⁹	4.6 x 10 ⁸	3.3 x 10 ⁸	9.6 x 10 ⁸	3.6 x 10 ⁷
N100/N14	180	170	100	110	530	390

 $N_{100} = \sigma_{100 \text{ TeV}} \times 30 \text{ ab}^{-1}$ $N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$

The unique contributions of a 100 TeV pp collider to Higgs physics

- <u>Huge Higgs production rates:</u>
 - access (very) rare decay modes
 - push to %-level Higgs self-coupling measurement
 - new opportunities to reduce syst uncertainties (TH & EXP) and push precision
- Large dynamic range for H production (in pTH, m(H+X), ...):
 - new opportunities for reduction of syst uncertainties (TH and EXP)
 - different hierarchy of production processes
 - \bullet develop indirect sensitivity to BSM effects at large Q^2 , complementary to that emerging from precision studies (eg decay BRs) at Q~m_H
- <u>High energy reach</u>
 - direct probes of BSM extensions of Higgs sector
 - SUSY Higgses
 - Higgs decays of heavy resonances
 - Higgs probes of the nature of EW phase transition

^{• . . .}

Higgs couplings after FCC-ee / hh

	HL-LHC	FCC-ee	FCC-hh
δГн / Гн (%)	SM	1.3	tbd
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17	tbd
δднww / днww (%)	1.7	0.43	tbd
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61	tbd
δg _{Hcc} / g _{Hcc} (%)	~70	1.21	tbd
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01	tbd
δg _{Ηττ} / g _{Ηττ} (%)	1.9	0.74	tbd
δg _{Hµµ} / g _{Hµµ} (%)	4.3	9.0	0.65 (*)
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9	0.4 (*)
δg _{Htt} / g _{Htt} (%)	3.4	~10 (indirect)	0.95 (**)
δg _{HZγ} / g _{HZγ} (%)	9.8	—	0.9 (*)
δдннн / дннн (%)	50	~44 (indirect)	6.5
BR _{exo} (95%CL)	$BR_{inv} < 2.5\%$	< 1%	BR _{inv} < 0.025%

* From BR ratios wrt B(H→4lept) @ FCC-ee

** From pp \rightarrow ttH / pp \rightarrow ttZ, using B(H \rightarrow bb) and ttZ EW coupling @ FCC-ee

The nature of the EW phase transition

Strong Ist order phase transition is required to induce and sustain the out of equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong Ist order phase transition $\Rightarrow \langle \Phi_C \rangle > T_C$

In the SM this requires $m_H \approx 80$ GeV, else transition is a smooth crossover.

Since $m_H = 125$ GeV, **new physics**, coupling to the Higgs and effective at **scales O(TeV)**, must modify the Higgs potential to make this possible

Probe the existence of other particles coupled to the Higgs

Example of precision targets: constraints on models with Ist order phase transition

$$\begin{split} V(H,S) &= -\mu^2 \left(H^{\dagger} H \right) + \lambda \left(H^{\dagger} H \right)^2 + \frac{a_1}{2} \left(H^{\dagger} H \right) S \\ &+ \frac{a_2}{2} \left(H^{\dagger} H \right) S^2 + \frac{b_2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4. \end{split}$$

Combined constraints from precision Higgs measurements at FCC-ee and FCC-hh Direct detection of extra Higgs states at FCC-hh

Direct discovery reach: the power of 100 TeV

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2019		50/									$\sqrt{s} = 13$ TeV
Model	S	Signatu	re ∫	∫ <i>L dt</i> [fb ⁻	¹]	Mass limit					Reference
$\tilde{q}\tilde{q},\tilde{q}\! ightarrow\!q ilde{\chi}_1^0$	0 <i>e</i> ,μ mono-iet	2-6 jets 1-3 jets	E_T^{miss}	36.1 36.1	<i>q̃</i> [2x, 8x Degen.] <i>ã</i> [1x, 8x Degen.]	0.43	0.9	1.55		$m(\tilde{\chi}_1^0) < 100 \text{ GeV}$ $m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	1712.02332
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}^0_1$	0 <i>e</i> ,μ	2-6 jets	E_T^{miss}	36.1	<i>q q</i>	0.10	Forbidden	0.95-1.6	2.0	$m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$	1712.02332
$ ilde{g} ilde{g}, ilde{g} ightarrow qar{q}(\ell\ell) ilde{\chi}^0_1$	З е, µ ее, µµ	4 jets 2 jets	<i>E</i> ^{miss}	36.1 36.1	8 7 8 7		1 Orbiddorr	1.2	1.85	$m(\tilde{\chi}_1^0) = 500 \text{ GeV}$ $m(\tilde{\chi}_1^0) = 500 \text{ GeV}$	1706.03731
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e,µ 3 e µ	7-11 jets 4 jets	E_T^{miss}	36.1 36.1	õ õ õ		0.98		1.8	$m(\tilde{\chi}_1^0) = 300 \text{ GeV}$ $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ $m(\tilde{\chi}_1^0) = 200 \text{ GeV}$	1708.02794
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$	0-1 e,μ 3 e,μ	3 <i>b</i> 4 jets	$E_T^{\rm miss}$	79.8 36.1	0 29 2 9 2 5		0.00	1.25	2.25	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{\chi}) - m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 1706.03731
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 36.1	$egin{array}{cccc} ella _1 & & Fo, \ ella _1 & & eta _1 & \ eta eta _1 &$	rbidden Forbidden Forbidden	0.9 0.58-0.82 0.7		$m(\tilde{\chi}_{1}^{0})=20$	$m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=1$ $m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=BR(t\tilde{\chi}_{1}^{+})=0.5$ $m(\tilde{\chi}_{1}^{+})=300 \text{ GeV}, BR(t\tilde{\chi}_{1}^{+})=1$	
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	6 b	$E_T^{\rm miss}$	139	$ ilde{b}_1$ Forbidden $ ilde{b}_1$	0.23-0.48		0.23-1.35	Δπ	$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{2}^{0}) = 0 \text{ GeV}$	SUSY-2018-31 SUSY-2018-31
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, Well-Tempered LSP$	0-2 <i>e</i> , <i>µ</i>	0-2 jets/1-2 Multiple	$2 b E_T^{\text{miss}}$	36.1 36.1	\tilde{t}_1 \tilde{t}_1		1.0 0.48-0.84	D	$m(\tilde{\chi}_1^0)=15$	$\mathbf{m}(\tilde{\chi}_1^0) = 1 \text{ GeV}$ 50 GeV, $\mathbf{m}(\tilde{\chi}_1^{\pm}) \cdot \mathbf{m}(\tilde{\chi}_1^0) = 5 \text{ GeV}, \tilde{\tau}_1 \approx \tilde{\tau}_L$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520
$ \begin{array}{c} \overline{0} \\ \overline{0} \\ \overline{0} \\ \overline{1}_{1} \overline{1}_{1}, \overline{1}_{1} \rightarrow \overline{\mathbf{\tau}}_{1} bv, \overline{\mathbf{\tau}}_{1} \rightarrow \overline{\mathbf{\tau}} \widetilde{\mathbf{G}} \\ \overline{0} \\ \overline{1}_{1} \overline{1}_{1}, \overline{1}_{1} \rightarrow \overline{\mathbf{c}} \widetilde{\mathbf{\chi}}_{1}^{0} / \widetilde{\mathbf{c}} \widetilde{\mathbf{c}}, \ \widetilde{\mathbf{c}} \rightarrow \overline{\mathbf{c}} \widetilde{\mathbf{\chi}}_{1}^{0} \end{array} $	1 τ + 1 e,μ,τ 0 e, μ	7 2 jets/1 b 2 c	E_T^{miss} E_T^{miss}	36.1 36.1	\tilde{t}_1 \tilde{c}		0.85	1.16		$m(ilde{ au}_1)$ =800 GeV $m(ilde{ au}_1^0)$ =0 GeV	1803.10178 1805.01649
	0 <i>e</i> , <i>µ</i>	mono-jet	$E_T^{\rm miss}$	36.1	$ ilde{t}_1 ilde{t}_1$	0.46 0.43				$\begin{array}{l} m(\tilde{t}_1,\tilde{c})\text{-}m(\tilde{\chi}_1^0)\text{=}50GeV \\ m(\tilde{t}_1,\tilde{c})\text{-}m(\tilde{\chi}_1^0)\text{=}5GeV \end{array}$	1805.01649 1711.03301
$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> , <i>µ</i>	4 <i>b</i>	E_T^{miss}	36.1	Ĩ2		0.32-0.88	_	m	$m(\tilde{\chi}_1^0) = 0 \text{ GeV}, m(\tilde{t}_1) - m(\tilde{\chi}_1^0) = 180 \text{ GeV}$	1706.03986
$\tilde{X}_1^{\pm}\tilde{X}_2^0$ via WZ	2-3 e, μ ee, μμ	≥ 1	E_T^{miss} E_T^{miss}	36.1 36.1	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ 0.17		0.6			$m({ ilde \chi}_1^0){=}0$ $m({ ilde \chi}_1^\pm){-}m({ ilde \chi}_1^0){=}10~{ m GeV}$	1403.5294, 1806.02293 1712.08119
$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW $ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via Wh	2 e,μ 0-1 e,μ	2 b	E_T^{miss} E_T^{miss}	139 36.1	$ \begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0 \end{array} $	0.42	0.68			$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\chi}_{1}^{0})=0$	ATLAS-CONF-2019-008 1812.09432
$\begin{array}{c} \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} \operatorname{via} \tilde{\ell}_{L} / \tilde{\nu} \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}_{1} \nu (\tau \tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}_{1} \tau (\nu \tilde{\nu}) \end{array}$	2 e,μ 2 τ		E_T^{miss} E_T^{miss}	139 36.1	$ \begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0 \end{array} $		1.0 0.76	D		$\begin{split} & m(\tilde{\ell}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}) {=} 0, m(\tilde{\tau}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \end{split}$	ATLAS-CONF-2019-008 1708.07875
$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$	2 e,µ	0 jets	E_{T}^{miss}	139	$ \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0 \qquad 0.22 $ $ \tilde{\ell} $		0.7		$m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=$	100 GeV, m($\tilde{\tau}, \tilde{\nu}$)=0.5(m($\tilde{\chi}_1^{\pm}$)+m($\tilde{\chi}_1^{0}$)) m($\tilde{\chi}_1^{0}$)=0	1708.07875 ATLAS-CONF-2019-008
$\tilde{H}\tilde{H},\tilde{H}\! ightarrow\!h\tilde{G}/Z\tilde{G}$	2 e,μ 0 e,μ 4 e,μ	≥ 1 $\geq 3 b$ 0 jets	E_T^{miss} E_T^{miss} E_T^{miss}	36.1 36.1 36.1	 <i>t</i> <i>θ</i> <i>θ</i>	0.3	0.29-0.88			$\begin{split} m(\tilde{\ell})\text{-}m(\tilde{\chi}^0_1) &= 5 \text{ GeV} \\ BR(\tilde{\chi}^0_1 \to h\tilde{G}) &= 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) &= 1 \end{split}$	1712.08119 1806.04030 1804.03602
Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	36.1	$ \tilde{\chi}_1^{\pm} $ $ \tilde{\chi}_1^{\pm} $ 0.15	0.46				Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple Multiple		36.1 36.1	\tilde{g} \tilde{g} [$\tau(\tilde{g})$ =10 ns, 0.2 ns]				2.0 2.05 2.4	$m(ilde{\mathcal{X}}^0_1)$ =100 GeV	1902.01636,1808.04095 1710.04901,1808.04095
LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	еµ,ет,µт		rmiss	3.2	$\tilde{\nu}_{\tau}$		0.00	4.00	1.9	$\lambda'_{311} = 0.11, \lambda_{132/133/233} = 0.07$	1607.08079
$\begin{array}{c} \chi_1^-\chi_1^-/\chi_2^0 \to WW/Z\ell\ell\ell\ell\nu\nu\\ \tilde{g}\tilde{g}, \tilde{g} \to qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to qqq \end{array}$	4 e, µ 4	1-5 large-R j	jets	36.1 36.1	$\chi_1^-/\chi_2^- [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ $\tilde{g} [m(\tilde{\chi}_1^0)=200 \text{ GeV}, 1100]$ $\tilde{g} [\lambda'' - 2e.4, 2e.5]$	GeV]	0.82	1.33	1.9	m(¼₁)=100 GeV Large 𝑋''12	1804.03602 1804.03568
$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow t b s$		Multiple		36.1 36.1	$\tilde{g} = [\lambda''_{112} = 2e-4, 1e-2]$		0.55	05	2.0	m($\tilde{\chi}_1^0$)=200 GeV, bino-like m($\tilde{\chi}_1^0$)=200 GeV, bino-like	ATLAS-CONF-2018-003 ATLAS-CONF-2018-003
$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell $	2 e, µ	2 jets + 2 i 2 b	b	36.7 36.1	$ \begin{array}{l} \tilde{t}_1 [qq, bs] \\ \tilde{t}_1 \\ \tilde{t}_1 [1e-10 < \lambda'] < 1e-8 \ 3e \end{array} $	0.42 2-10< √ <3e-9]	0.61	0.4-1.45		$BR(i \rightarrow a) = 100\%$	1710.07171 1710.05544 ATLAS CONE 2019.006
	τμ			130	23k	23k	1.0		_	$BH(t] \rightarrow q\mu) = 100\%, COM(t) = 100\%$	ATEAS-CONF-2019-006
nly a calentian of the available my	aca limita an	now stat	00 0r	4			<u></u>	1			
henomena is shown. Many of the molified models, c.f. refs. for the	limits are ba assumptions	ised on made.	00 01		0						
	,							@1	4 Te'	V	
								A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE			1.0
									A CONTRACTOR OF THE OWNER		
										Contraction of the second second	
										THE REAL PROPERTY OF THE PARTY	
										Contraction of the second s	

s-channel resonances

FCC-hh reach ~ 6 x HL-LHC reach

SUSY reach at 100 TeV

Early phenomenology studies

K. Terashi, R. Sawada, M. Saito, and S. Asai, *Search for WIMPs with disappearing track signatures at the FCC-hh*, (Oct, 2018) . https://cds.cern.ch/record/2642474.

 $M_{\rm WIMP} \le 1.8 {
m ~TeV}$

Disappearing charged track analyses (at ~full pileup)

=> coverage beyond the upper limit of the thermal WIMP mass range for both higgsinos and winos !!

MSSM Higgs @ 100 TeV

N. Craig, J. Hajer, Y.-Y. Li, T. Liu, H. Zhang, J. arXiv: 1605.08744 ar

J. Hajer, Y.-Y. Li, T. Liu, and J. F. H. Shiu, arXiv: 1504.07617

Hadron collider parameters (pp)

parameter	FC	CC-hh	HE-LHC	(HL) LHC
collision energy cms [TeV]		100	27	14
dipole field [T]		16	16	8.3
circumference [km]		100	27	27
beam current [A]		0.5	1.12	(1.12) 0.58
bunch intensity [1011]		l (0.5)	2.2	(2.2) 1.15
bunch spacing [ns]	25	5 (12.5)	25 (12.5)	25
norm. emittance γε _{x,y} [μm]	2.	2 (1.1)	2.5 (1.25)	(2.5) 3.75
ΙΡ β [*] _{x,y} [m]	1.1	0.3	0.25	(0.15) 0.55
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	28	(5) 1
peak #events / bunch Xing	170	1000 (500)	800 (400)	(135) 27
stored energy / beam [GJ]		8.4	1.4	(0.7) 0.36
SR power / beam [kW]		2400	100	(7.3) 3.6
transv. emit. damping time [h]		1.1	3.6	25.8
initial proton burn off time [h]	17.0	3.4	3.0	(15) 40

Goal: 20-30 ab⁻¹ during the collider lifetime

FCC-hh cryogenic beam vacuum system

Synchrotron radiation (~ 30 W/m/beam (@16 T field) (LHC <0.2W/m) ~ 5 MW total load in arcs

- Absorption of synchrotron radiation at ~50 K for cryogenic efficiency (5 MW →100 MW cryoplant)
- Provision of beam vacuum, suppression of photo-electrons, electron cloud effect, impedance, etc.

Nb₃Sn conductor development program

Nb₃Sn is one of the key cost & performance factors for FCC-hh / HE-LHC

Main development goals:

- J_c increase (16T, 4.2K) > 1500 A/mm² i.e.
 50% increase wrt HL-LHC wire
- Reference wire diameter 1 mm
- Potentials for large-scale production and cost reduction

Future Circular Collider Study - Status Michael Benedikt SPC, CERN, 26. September 2017

CÉRN

15

Worldwide FCC Nb₃Sn program

Established world activities from Nb₃Sn development

• Procurement of state-of-the-art conductor:

Bruker-OST- European/US

- Conductor development with regional industry:
 - CERN/KEK Japanese contribution. Japanese industry (JASTEC, Furukawa, SH Copper) and laboratories (Tohoku Univ. and NIMS).
 - CERN/Bochvar High-technology Research Inst. Russian contribution. Russian industry (TVEL) and laboratories
 - CERN/KAT Korean industrial contribution
- Characterization of conductor & research with universities:

Technical Univ. Vienna, Geneva University, University of Twente

Applied Superconductivity Centre at Florida State University

16 T dipole design activities and options

FCC-hh Detector – Reference Design for CDR

- During last years converged on reference design for an FCC-hh experiment
- Radiation simulations
 - Demonstrate in the
 CDR document, that
 an experiment
 exploiting the full FCChh physics potential is
 technically feasible
- → Input for Delphes physics simulations
- Room for other ideas, other concepts and different technologies

FCC-ee luminosity targets

FCC-ee run plan

Table 2.1: Run plan for FCC-ee in its baseline configuration with two experiments. The number of WW events is given for the entirety of the FCC-ee running at and above the WW threshold.

Phase	Run duration	Centre-of-mass	Integrated	Event
	(years)	Energies (GeV)	Luminosity (ab ⁻¹)	Statistics
FCC-ee-Z	4	88-95	150	3×10^{12} visible Z decays
FCC-ee-W	2	158-162	12	10 ⁸ WW events
FCC-ee-H	3	240	5	10 ⁶ ZH events
FCC-ee-tt(1)	1	340-350	0.2	$t\bar{t}$ threshold scan
FCC-ee-tt(2)	4	365	1.5	$10^6 t\bar{t}$ events

=> 14 years, including shutdowns for accelerator upgrades

FCC-ee + FCC-hh, project timeline

Domain	Cost in MCHF
Stage 1 - Civil Engineering	5,400
Stage 1 - Technical Infrastructure	2,200
Stage 1 - FCC-ee Machine and Injector Complex	4,000
Stage 2 - Civil Engineering complement	600
Stage 2 - Technical Infrastructure adaptation	2,800
Stage 2 - FCC-hh Machine and Injector complex	13,600
TOTAL construction cost for integral FCC project	28,600

Table 5: Summary of capital cost to implement the integral FCC programme (FCC-ee followed by FCC-hh).

FCC-hh stand-alone, project timeline&cost

Domain	Cost in MCHF
Collider and injector complex	13,600
Technical infrastructure	4,400
Civil Engineering	6,000
TOTAL construction cost	24,000

Final remarks

- The study of the SM will not be complete until we clarify the nature of the Higgs mechanism and exhaust the exploration of phenomena at the TeV scale: many aspects are still obscure, many questions are still open.
- The combination of a versatile high-luminosity e⁺e⁻ circular collider, with a follow-up pp collider in the 100 TeV range, appears like the ideal facility for the post-LHC era
 - complementary and synergetic precision studies of EW, Higgs and top properties
 - energy reach to allow direct discoveries at the mass scales possibly revealed by the precision measurements
 - flavor factory at the Z pole, heavy ions and ep collisions: extremely diversified program => broad community engagement

Major events organized

FCC-ee

- 5th TLEP Workshop "TLEP physics and technology", Fermilab, 25-26 July 2013, https://indico.cern.ch/event/246137/
- 6th TLEP Workshop, CERN, 16-18 October 2013, https://indico.cern.ch/event/257713/
- FCC-ee/TLEP physics workshop (TLEP7), CERN, 19-21 June 2014, https://indico.cern.ch/event/313708/
- FCC-ee (TLEP) Physics Workshop (TLEP8), LPNHE Paris, 27-29 October 2014, https://indico.cern.ch/ event/337673/
- FCC-ee (TLEP) Physics Workshop (TLEP9), SNS Pisa, 3-5 February 2015, https://indico.cern.ch/event/357188/
- 1st FCC-ee mini-workshop on Detector Requirements, CERN, 17-18 June 2015, https://indico.cern.ch/event/393093/
- FCC-ee mini-workshop on "Precision Observables and Radiative Corrections", CERN, 13-14July 2015, <u>https://indico.cern.ch/event/387296/</u>
- First FCC-ee workshop on Higgs physics, CERN, 24-25 Sept. 2015, https://indico.cern.ch/event/401590/
- Workshop on high-precision α_s measurements: from LHC to FCC-ee, 12-13 October 2015, <u>https://indico.cern.ch/event/392530/</u>
- FCC-ee Mini-Workshop: "Physics Behind Precision", CERN, 2-3 February 2016, https://indico.cern.ch/event/469561/
- 10th FCC-ee Physics Workshop, CERN, CERN, 2-3 February 2016, https://indico.cern.ch/ event/469576/
- Parton Radiation and Fragmentation from LHC to FCC-ee, CERN, 21-22 Nov 2016, <u>https://indico.cern.ch/event/557400/</u>
- 2nd mini-workshop on FCC-ee detector requirements CERN, 23-24 November 2016, https://indico.cern.ch/event/570415/
- Mini workshop: Precision EW and QCD calculations for the FCC studies, CERN 12-13 January 2018, https://indico.cern.ch/ event/669224/
- FCC-ee mini-workshop on Flavours, CERN, 31 Jan.-1 Feb. 2018, https://indico.cern.ch/event/687191/
- 11th FCC-ee workshop: Theory and Experiments, CERN, 8 11 Jan 2019, https://indico.cern.ch/event/766859/

FCC-hh

- Ions at the Future Hadron Collider, Dec16-17 2013, https://indico.cern.ch/event/288576/
- BSM physics opportunities at 100 TeV, Febr 10-11 2014, https://indico.cern.ch/event/284800/
- 1st Future Hadron Collider Workshop, May 26-28 2014, https://indico.cern.ch/event/304759
- Ions at the Future Circular Collider, Sept 22-23 2014, https://indico.cern.ch/event/331669/
- Higgs & BSM at 100 TeV, March 11-13 2015, https://indico.cern.ch/event/352868/
- QCD, EW and tools at 100 TeV, Oct 7-9 2015, https://indico.cern.ch/event/437912/
- Dark Matter at a future hadron collider, Dec 4-6 2015, https://indico.cern.ch/event/445743/

FCC-eh

- LHeC and FCC-eh, CERN and Chavanne-de-Bogis, 24-26.6.2015, https://indico.cern.ch/ event/356714/
- LHeC and FCC-eh, CERN, 11-13.9.2017, <u>https://indico.cern.ch/event/639067/</u>
- Electrons for the LHC LHeC/FCC-eh and PERLE, Orsay, 27-29.6.2018, https://indico.cern.ch/event/698368/

Joint

- LHC, FCC-ee, FCC-hh Interplay, 25 November 2016, https://indico.cern.ch/event/ 573689/
- 1st FCC Physics Workshop, January 16-20 2017, https://indico.cern.ch/event/550509/
- 2nd FCC Physics Workshop, January 15-19 2018, https://indico.cern.ch/event/618254/

... plus many events worldwide dedicated to physics at FCCs

Reports produced

FCC-ee

- First Look at the Physics Case of TLEP, <u>https://arxiv.org/abs/1308.6176</u>
- High-Precision αs Measurements from LHC to FCC-ee, Workshop report, <u>https://arxiv.org/abs/1512.05194</u>
- Physics Behind Precision, Workshop report, https://arxiv.org/abs/1703.01626
- Parton Radiation and Fragmentation from LHC to FCC-ee, Workshop report, <u>https://arxiv.org/abs/1702.01329</u>
- Standard Model Theory for the FCC-ee: The Tera-Z, Workshop report, <u>https://arxiv.org/abs/</u> <u>1809.01830</u>

FCC-hh

"Physics at 100 TeV", CERN Yellow Report:

- Standard Model processes https://arxiv.org/abs/1607.01831
- Higgs and EW symmetry breaking studies, <u>https://arxiv.org/abs/1606.09408</u>
- Beyond the Standard Model phenomena, https://arxiv.org/abs/1606.00947
- Heavy ions at the Future Circular Collider, <u>https://arxiv.org/abs/1605.01389</u>
- Physics Opportunities with the FCC-hh Injectors, https://arxiv.org/abs/1706.07667

... plus hundreds of articles inspired by the physics opportunities at FCCs

Future Circular Collider Study Conceptual Design Report Volume 1: Physics Opportunities <u>https://fcc-cdr.web.cern.ch</u>

FCC Collaboration	vii
Executive Summary	xix
Introduction	1
1 Introduction	1
1.1 Physics Scenarios After the LHC and the Open Questions	2
1.2 The Role of FCC-ee	4
1.3 The Role of FCC-hh	5
1.4 The Role of FCC-eh	6
1.5 The Study of Hadronic Matter at High Density and High Temperature	6
1.6 Unknown Unknowns	
1.7 The Goals and Structure of This Volume	7
2 The future circular colliders	9
2.1 FCC-ee	9
2.2 FCC-hh and HE-LHC	
2.3 FCC-hh: Operations with Heavy Ions	
2.4 FCC-eh	12
The measurement potential	13
3 EW measurements	15
3.1 Introduction	
3.2 FCC-ee	
3.2.1 Overview	
3.2.2 Electroweak Programme at the Z^0 peak	
3.2.3 The Number of Light Neutrino Species	
3.2.4 The W^+W^- and $t\bar{t}$ Thresholds	
3.2.5 Summary and Demands on Theoretical Calculations	
3.3 FCC-hh	
3.3.1 Drell-Yan Processes	
3.3.2 Gauge Boson Pair Production	
3.3.3 Gauge boson(s) Production via Vector Boson Scattering and Fusion	
3.4 FCC-eh	
4 Higgs measurements	31

FCC Physics Opportunities

4.1	Introduction	31
4.2	FCC-ee	32
4.2.1	Model-independent Coupling Determination from the Higgs Branching Fractions	32
4.2.2	The Top Yukawa Coupling and the Higgs Self-Coupling	34
4.3	FCC-hh	36
4.3.1	Longitudinal Vector Boson Scattering	42
4.4	HE-LHC	43
4.5	FCC-eh	44
4.5.1	SM Higgs Decays	45
4.5.2	Determination of Higgs Couplings	46
4.5.3	Top and Invisible Higgs Couplings	47
4.5.4	Exotic Higgs Phenomena	47
5 (QCD measurements	49
5.1	FCC-ee	49
5.1.1	High-Precision α_s Determination	49
5.1.2	High-Precision Parton Radiation Studies	50
5.1.3	High-precision Non-Perturbative QCD	52
5.2	FCC-hh	53
5.3	FCC-eh	56
5.3.1	Parton Distributions	57
5.3.2	Small x Physics	62
5.3.2	Small x Physics	62
5.3.2 6 1	Small <i>x</i> Physics	62 67
5.3.2 6 T 6.1	Small x Physics Small x Physics Fop quark measurements Introduction Introduction Small x Physics	62 67 67
5.3.2 6 1 6.1 6.2	Small x Physics Small x Physics Fop quark measurements Introduction Introduction FCC-ee Provision Measurements at the Threshold	62 67 67 67
5.3.2 6 1 6.1 6.2 6.2.1	Small x Physics Small x Physics Fop quark measurements Introduction Introduction Small x Physics FCC-ee Small x Physics Precision Measurements at the Threshold Small x Physics Precision Measurement of the Ten Electroweek Couplings	62 67 67 67 68 68
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.2	Small x Physics	 62 67 67 68 68 68 60
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.3 6.2.3	Small x Physics	 62 67 67 68 68 69 70
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3	Small x Physics Cop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Tep Preduction	 62 67 67 68 68 69 70 71
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3.1 6.3.1	Small x Physics Cop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Top Production	 62 67 67 68 68 69 70 71 72
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3 6.3.1 6.3.2 6.3.2	Small x Physics Cop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Top Production Associated Production	 62 67 67 68 68 69 70 71 72 74
5.3.2 6 7 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3.1 6.3.2 6.3.3 6.3.3	Small x Physics Cop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Top Production Associated Production Rare Top Decays	 62 67 67 68 69 70 71 72 74 74
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3 6.3.1 6.3.2 6.3.3 6.4 6.4	Small x Physics Fop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Top Production Associated Production Rare Top Decays FCC-eh	 62 67 67 68 69 70 71 72 74 74 74
5.3.2 6 1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3.1 6.3.2 6.3.3 6.4 6.4.1 6.4.1	Small x Physics Cop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Top Production Associated Production Rare Top Decays FCC-eh Wtq Couplings	62 67 67 68 68 69 70 71 72 74 74 75
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3 6.3 6.3.1 6.3.2 6.3.3 6.4 6.4.1 6.4.2 6.4.2	Small x Physics Cop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Top Production Associated Production Rare Top Decays FCC-eh Wtq Couplings FCNC Top Quark Couplings	62 67 67 68 68 69 70 71 72 74 74 75 76
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3 6.3.1 6.3.2 6.3.3 6.4 6.4.1 6.4.2 6.4.3	Small x Physics Cop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Top Production Associated Production Rare Top Decays FCC-eh Wtq Couplings FCNC Top Quark Couplings Other Top Quark Property Measurements and Searches for New Physics	62 67 67 68 68 69 70 71 72 74 74 75 76 77
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3 6.3.1 6.3.2 6.3.3 6.4 6.4.1 6.4.2 6.4.3 7 H	Small x Physics Cop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Top Production Associated Production Rare Top Decays FCC-eh Wtq Couplings FCNC Top Quark Couplings Other Top Quark Property Measurements and Searches for New Physics	 62 67 67 68 69 70 71 72 74 74 75 76 77 79
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3 6.3.1 6.3.2 6.3.3 6.4 6.4.1 6.4.2 6.4.3 7 H 7.1	Small x Physics Cop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Top Production Associated Production Rare Top Decays FCC-eh Wtq Couplings FCNC Top Quark Couplings Other Top Quark Property Measurements and Searches for New Physics	 62 67 67 68 69 70 71 72 74 75 76 77 79 79
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3.1 6.3.2 6.3.3 6.4 6.4.1 6.4.2 6.4.3 7 H 7.1 7.1.1	Small x Physics Fop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Top Production Associated Production Rare Top Decays FCC-eh Wtq Couplings FCNC Top Quark Couplings Other Top Quark Property Measurements and Searches for New Physics Flavour physics measurements FCC-ee Flavour Anomalies and Electroweak Penguins in $b \rightarrow s$ Quark Transitions	 62 67 67 68 69 70 71 72 74 74 75 76 77 79 79 79
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3.1 6.3.2 6.3.3 6.4 6.4.1 6.4.2 6.4.3 7 H 7.1 7.1.1 7.1.2	Small x Physics Fop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Top Production Associated Production Rare Top Decays FCC-eh Wtq Couplings FCNC Top Quark Couplings Other Top Quark Property Measurements and Searches for New Physics Flavour physics measurements FCC-ee Flavour Anomalies and Electroweak Penguins in $b \rightarrow s$ Quark Transitions Lepton Flavour Violation in Z-boson Decays and Tests of Lepton Flavour Universality	 62 67 67 68 69 70 71 72 74 75 76 77 79 79 81
5.3.2 6 1 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3.1 6.3.2 6.3.3 6.4 6.4.1 6.4.2 6.4.3 7 H 7.1 7.1.1 7.1.2	Small x Physics Fop quark measurements Introduction FCC-ee Precision Measurements at the Threshold Precision Measurement of the Top Electroweak Couplings Search for FCNC in Top Production or Decay FCC-hh Single Top Production Associated Production Rare Top Decays FCC-eh Wtq Couplings FCNC Top Quark Couplings Other Top Quark Property Measurements and Searches for New Physics Stavour physics measurements FCC-ee Flavour Anomalies and Electroweak Penguins in $b \rightarrow s$ Quark Transitions Lepton Flavour Violation in Z-boson Decays and Tests of Lepton Flavour Universality	62 67 67 68 68 69 70 71 72 74 75 76 77 79 79 81

xxix

PREPRINT submitted to Eur. Phys. J. C, Revision 0.9			
12 S	earches for Dark Matter and Dark Sectors	12	
11.4	Summary	12	
11.3	Collider Probes	11	
11.2	The Electroweak Phase Transition	11	
11.1	Introduction	11	
II S	tudies of the EW Phase Transition	11	
10.7	Summary	11	
10.6	Double Higgs Production at FCC-eh	11	
10.5.3	Other Probes of Multi-Linear Higgs Interactions	11	
10.5.2	Other Final States in $gg \rightarrow HH$	11	
10.5 1	ag HH hov	11	
10.4	FCC_bh: Direct Probes	11	
10.5	ECC as: Indirect Probe	10	
10.2	Ungins of a Modified Higgs Self-Coupling	10	
10.1	Introduction	10	
10 T	he Nature of the Higgs Potential	10	
		32.0	
9.4	Neutral Naturalness	10	
9.3	Composite Higgs	10	
9.2.1	Direct Stop Search at FCC-hh	10	
9.2	Supersymmetry	10	
9.1	Introduction	10	
9 Т	he Origin of the Higgs Mass	10	
8.5	Global Fits	9	
8.4.2	Higgs Differential Measurements at FCC-hh	9	
8.4.1	On-Shell Higgs Couplings at FCC	9	
8.4	Higgs Couplings Fit	9	
8.3	Electroweak Observables at FCC-hh	9	
8.2	Electroweak Fit at FCC-ee and FCC-eh	8	
8.1	Introduction	8	
8 G	lobal EFT Fits to EW and Higgs Observables	8	
Inter	pretation and sensitivity to new physics	8	
7.2	FCC-hh	8	
7.1.5	Additional Flavour Physics Opportunities	8	

7.1.3

FCC Physics Opportunities

12.2	Discovering WIMPs: an Example
12.2.1	The Search for Disappearing Tracks at FCC-hh and FCC-eh
12.3	Simplified Models: an Example
12.4	Exploring the Dark Sector
12.5	Summary
13 8	earches for Massive Neutrinos 131
13.1	Introduction
13.2	Searches at FCC
13.3	Summary
14 H	Iigh Energy Probes of Flavour Anomalies135
14.1	Introduction
14.2	Naive Z' and Leptoquark Models
14.3	Projected Sensitivity at FCC-hh
14.4	Summary
15 8	earches for Other BSM Phenomena 139
15.1	Introduction
15.2	Low-mass Signatures
15.2.1	Exotic Higgs Decays
15.2.2	Exotic Z Decays
15.3	High-Energy Signatures
15.3.1	s-channel Resonances in pp
15.3.2	FCC-hh: Pair Production
15.3.3	FCC-eh: Leptoquarks
15.4	Summary
Physi	cs with heavy ions 144
16 I	Physics with Heavy Ions 147
16.1	Introduction
16.2	QGP Studies: Bulk Properties and Soft Observables
16.2.1	Global Characteristics of Pb–Pb Collisions
16.2.2	Collective Phenomena from Heavy-Ion to pp Collisions
16.3	QGP Studies: Hard Probes
16.3.1	Jet Quenching
16.3.2	Heavy Flavour and Quarkonia
16.4	Nuclear PDF Measurements and Search For Saturation
16.4.1	Studies in Hadronic pA and AA Collisions
16.4.2	Exclusive Photoproduction of Heavy Quarkonia
16.4.3	Electron-Nucleus Collisions
16.5	Contributions to Other Sectors of High-Energy Physics
16.5.1	γγ Collisions
16.5	Fixed-Target Collisions Using the FCC proton and Ph Beams